Chapter 7 Class 12 Integrals
Concept wise

Slide7.JPG

Slide8.JPG
Slide9.JPG

Go Ad-free

Transcript

Ex 7.4, 1 (3๐‘ฅ^2)/(๐‘ฅ^6 + 1) We need to find โˆซ1โ–’(๐Ÿ‘๐’™^๐Ÿ)/(๐’™^๐Ÿ” + ๐Ÿ) ๐’…๐’™ Let ๐’™^๐Ÿ‘=๐’• Diff both sides w.r.t. x 3๐‘ฅ^2=๐‘‘๐‘ก/๐‘‘๐‘ฅ ๐’…๐’™=๐’…๐’•/(๐Ÿ‘๐’™^๐Ÿ ) Thus, our equation becomes โˆซ1โ–’(๐Ÿ‘๐’™^๐Ÿ)/(๐’™^๐Ÿ” + ๐Ÿ) ๐’…๐’™ =โˆซ1โ–’(3๐‘ฅ^2)/((๐‘ฅ^3 )^2 + 1) ๐‘‘๐‘ฅ Putting the value of ๐‘ฅ^3=๐‘ก and ๐‘‘๐‘ฅ=๐‘‘๐‘ก/(3๐‘ฅ^2 ) =โˆซ1โ–’(3๐‘ฅ^2)/(๐‘ก^2 + 1) .๐‘‘๐‘ก/(3๐‘ฅ^2 ) =โˆซ1โ–’๐‘‘๐‘ก/(๐‘ก^2 + 1) =โˆซ1โ–’๐’…๐’•/(๐’•^๐Ÿ + (๐Ÿ)^๐Ÿ ) =1/1 tan^(โˆ’1)โกใ€– ๐‘ก/1 ใ€—+๐ถ It is of form โˆซ1โ–’๐‘‘๐‘ก/(๐‘ฅ^2 + ๐‘Ž^2 ) =1/๐‘Ž ใ€–ใ€–๐‘ก๐‘Ž๐‘›ใ€—^(โˆ’1) ใ€—โกใ€–๐‘ฅ/๐‘Žใ€— +๐ถ โˆด Replacing ๐‘ฅ = ๐‘ก and ๐‘Ž by 1 , we get =tan^(โˆ’1)โกใ€– (๐‘ก)ใ€—+๐ถ =ใ€–ใ€–๐’•๐’‚๐’ใ€—^(โˆ’๐Ÿ) ใ€—โก(๐’™^๐Ÿ‘ )+๐‘ช ("Using" ๐‘ก=๐‘ฅ^3 )

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo