Ex 7.3, 22 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Ex 7.3
Ex 7.3, 2
Ex 7.3, 3 Important
Ex 7.3, 4 Important
Ex 7.3, 5
Ex 7.3, 6 Important
Ex 7.3, 7
Ex 7.3, 8
Ex 7.3, 9 Important
Ex 7.3, 10 Important
Ex 7.3, 11
Ex 7.3, 12
Ex 7.3, 13 Important
Ex 7.3, 14
Ex 7.3, 15
Ex 7.3, 16 Important
Ex 7.3, 17
Ex 7.3, 18 Important
Ex 7.3, 19 Important
Ex 7.3, 20 Important
Ex 7.3, 21
Ex 7.3, 22 Important You are here
Ex 7.3, 23 (MCQ)
Ex 7.3, 24 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 7.3, 22 1/(cosβ‘(π₯ β π) cosβ‘γ(π₯ β π)γ ) β«1β1/(cosβ‘(π₯ β π) cosβ‘γ(π₯ β π)γ ) Multiply & Divide by πππβ‘(πβπ) =β«1βγsinβ‘(π β π)/sinβ‘(π β π) Γ1/(cosβ‘(π₯ β π) cosβ‘(π₯ β π) )γ ππ₯ =1/sinβ‘(π β π) β«1βsinβ‘(π β π)/(cosβ‘(π₯ β π) cosβ‘(π₯ β π) ) ππ₯ =1/sinβ‘(π β π) β«1βsinβ‘(π β π + π₯ β π₯)/(cosβ‘(π₯ β π) cosβ‘(π₯ β π) ) ππ₯ =1/sinβ‘(π β π) β«1βsinβ‘((π₯ β π) + (π β π₯))/(cosβ‘(π₯ β π) cosβ‘(π₯ β π) ) ππ₯ =1/sinβ‘(π β π) β«1βsinβ‘((π₯ β π) β (π₯ β π))/(cosβ‘(π₯ β π) cosβ‘(π₯ β π) ) ππ₯ =1/sinβ‘(π β π) β«1β(sinβ‘(π₯ β π) cosβ‘(π₯ β π) β cosβ‘(π₯ β π) sinβ‘(π₯ β π))/(cosβ‘(π₯ β π) cosβ‘(π₯ β π) ) ππ₯ =1/sinβ‘(π β π) β«1β((sinβ‘(π₯ β π) cosβ‘(π₯ β π))/(cosβ‘(π₯ β π) cosβ‘(π₯ β π) ) β (cosβ‘(π₯ β π) sinβ‘(π₯ β π))/(cosβ‘(π₯ β π) cosβ‘(π₯ β π) )) ππ₯ =1/sinβ‘(π β π) [β«1β(sinβ‘(π₯ β π)/cosβ‘(π₯ β π) β sinβ‘(π₯ β π)/cosβ‘(π₯ β π) ) ππ₯] =1/sinβ‘(π β π) [β«1βγtanβ‘(π₯βπ)βtanβ‘(π₯βπ) γ ππ₯] =1/sinβ‘(π β π) [β«1βtanβ‘(π₯βπ) ππ₯ββ«1βtanβ‘(π₯βπ) ππ₯] Using π ππβ‘(π΄βπ΅)=π ππβ‘π΄ πππ β‘π΅βπππ β‘π΄ π ππβ‘π΅ Replace A by (π₯βπ) & B by (π₯βπ) π ππβ‘((π₯βπ)β(π₯βπ)) =π ππβ‘(π₯βπ) πππ β‘(π₯βπ)βπππ β‘(π₯βπ) π ππβ‘(π₯βπ) Using β«1βtanβ‘π₯ ππ₯=βlogβ‘|cosβ‘π₯ |+πΆ =1/sinβ‘(π β π) [βlogβ‘|cosβ‘(π₯βπ) |+logβ‘|cosβ‘(π₯βπ) | ]+πΆ =1/sinβ‘(π β π) [logβ‘|cosβ‘(π₯βπ) |βlogβ‘|cosβ‘(π₯βπ) | ]+πΆ =π/πππβ‘(π β π) π₯π¨π β‘|πππβ‘(π β π)/πππβ‘(π β π) |+πͺ