Chapter 7 Class 12 Integrals
Concept wise

Ex 7.3, 19 - Integrate 1 / sin x. cos3 x - Chapter 7 - Ex 7.3 Ex 7.3, 19 - Chapter 7 Class 12 Integrals - Part 2 Ex 7.3, 19 - Chapter 7 Class 12 Integrals - Part 3

You saved atleast 2 minutes of distracting ads by going ad-free. Thank you :)

You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.


Transcript

Ex 7.3, 19 Integrate the function 1/(sin⁑π‘₯ . cos^3⁑π‘₯ ) ∫1β–’1/(sin⁑π‘₯ . cos^3⁑π‘₯ ) 𝑑π‘₯ =∫1β–’(sin^2⁑π‘₯ + cos^2⁑π‘₯)/(sin⁑π‘₯ . cos^3⁑π‘₯ ) 𝑑π‘₯ =∫1β–’(sin^2⁑π‘₯/(sin⁑π‘₯ . cos^3⁑π‘₯ )+cos^2⁑π‘₯/(sin⁑π‘₯ . cos^3⁑π‘₯ )) 𝑑π‘₯ =∫1β–’(𝑠𝑖𝑛⁑π‘₯/cos^3⁑π‘₯ +π‘π‘œπ‘ β‘π‘₯/(sin⁑π‘₯ . cos^2⁑π‘₯ )) 𝑑π‘₯ =∫1β–’(𝑠𝑖𝑛⁑π‘₯/π‘π‘œπ‘ β‘π‘₯ Γ—1/cos^2⁑π‘₯ +π‘π‘œπ‘ β‘π‘₯/sin⁑π‘₯ Γ—1/cos^2⁑π‘₯ ) 𝑑π‘₯ =∫1β–’γ€–1/cos^2⁑π‘₯ (𝑠𝑖𝑛⁑π‘₯/π‘π‘œπ‘ β‘π‘₯ +π‘π‘œπ‘ β‘π‘₯/sin⁑π‘₯ ) γ€— 𝑑π‘₯ (As 〖𝑠𝑖𝑛〗^2β‘πœƒ+γ€–π‘π‘œπ‘ γ€—^2β‘πœƒ=1) =∫1β–’γ€–sec^2⁑π‘₯ (tan⁑π‘₯+cot⁑π‘₯ ) γ€— 𝑑π‘₯ =∫1β–’γ€–sec^2⁑π‘₯ (tan⁑π‘₯+1/tan⁑π‘₯ ) γ€— 𝑑π‘₯ =∫1β–’γ€–(tan⁑π‘₯+1/tan⁑π‘₯ ). sec^2⁑π‘₯ γ€— 𝑑π‘₯ Putting π‘‘π‘Žπ‘›β‘π‘₯=𝑑 Differentiating w.r.t.x sec^2⁑π‘₯=𝑑𝑑/𝑑π‘₯ 𝑑π‘₯=1/sec^2⁑π‘₯ 𝑑𝑑 Thus, our equation becomes =∫1β–’γ€–(𝑑+1/𝑑) sec^2⁑π‘₯Γ—1/sec^2⁑π‘₯ γ€— 𝑑𝑑 =∫1β–’(𝑑+1/𝑑) 𝑑𝑑 =∫1▒𝑑 𝑑𝑑+∫1β–’1/𝑑 𝑑𝑑 =𝑑^2/2 +log⁑|𝑑|+𝐢 Putting value of 𝑑=π‘‘π‘Žπ‘›β‘π‘₯ =(γ€–π‘‘π‘Žπ‘›γ€—^2 π‘₯)/2+π‘™π‘œπ‘”β‘|π‘‘π‘Žπ‘›β‘π‘₯ |+𝐢 =π’π’π’ˆβ‘|𝒕𝒂𝒏⁑𝒙 |+(〖𝒕𝒂𝒏〗^𝟐 𝒙)/𝟐 +π‘ͺ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo