



Chapter 7 Class 12 Integrals
Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Transcript
Ex 7.3, 6 𝑠𝑖𝑛 𝑥 sin2𝑥 sin3𝑥 ∫1▒sin〖𝑥 sin〖2𝑥 sin3𝑥 〗 〗 𝑑𝑥 =∫1▒〖(sin𝑥 sin2𝑥 ) sin3𝑥 〗 𝑑𝑥 We know that 2 sin𝐴 sin𝐵=−cos(𝐴+𝐵)+cos(𝐴−𝐵) sin𝐴 sin𝐵=1/2 [−cos(𝐴+𝐵)+cos(𝐴−𝐵) ] sin𝐴 sin𝐵=1/2 [cos(𝐴−𝐵)−cos(𝐴+𝐵) ] Replace A by 𝑥 & B by 2𝑥 sin𝑥 sin2𝑥=1/2 [cos(𝑥−2𝑥)−cos(𝑥+2𝑥) ] sin𝑥 sin2𝑥 =1/2 [cos(−𝑥)−cos(3𝑥) ] sin𝑥 sin2𝑥 =1/2 [cos〖 𝑥〗−cos3𝑥 ] Thus, our equation becomes ∫1▒𝐬𝐢𝐧〖𝒙 𝐬𝐢𝐧𝟐𝒙 sin3𝑥 〗 𝑑𝑥 =∫1▒〖𝟏/𝟐 (𝒄𝒐𝒔𝒙−𝒄𝒐𝒔𝟑𝒙 ) 〗 . sin3𝑥.𝑑𝑥 =1/2 ∫1▒(cos𝑥−cos3𝑥 ) sin3𝑥 𝑑𝑥 =1/2 [∫1▒(cos𝑥. sin3𝑥−cos3𝑥. sin3𝑥 ) ]𝑑𝑥 =1/2 [∫1▒〖cos𝑥. sin3𝑥 〗 𝑑𝑥−∫1▒〖cos3𝑥. sin3𝑥 〗 𝑑𝑥] (∵𝑐𝑜𝑠(−𝑥)=𝑐𝑜𝑠𝑥) ∫1▒〖𝒄𝒐𝒔𝒙. 𝒔𝒊𝒏𝟑𝒙 〗 𝒅𝒙 We know that 2 𝑠𝑖𝑛𝐴 𝑐𝑜𝑠𝐵 =𝑠𝑖𝑛(𝐴+𝐵)+𝑠𝑖𝑛(𝐴−𝐵) 𝑠𝑖𝑛𝐴 𝑐𝑜𝑠𝐵=1/2 [𝑠𝑖𝑛(𝐴+𝐵)+𝑠𝑖𝑛(𝐴−𝐵) ] Replace A by 3𝑥 & B by 𝑥 sin3𝑥 cos𝑥 = 1/2 [𝑠𝑖𝑛(𝑥+3𝑥)+sin(3𝑥−𝑥) ] = 1/2 [𝑠𝑖𝑛4𝑥+sin2𝑥 ] ∫1▒〖𝒄𝒐𝒔𝟑𝒙. 𝒔𝒊𝒏𝟑𝒙 〗 𝒅𝒙 We know that 2 𝑠𝑖𝑛𝐴 𝑐𝑜𝑠𝐵 =𝑠𝑖𝑛(𝐴+𝐵)+𝑠𝑖𝑛(𝐴−𝐵) 𝑠𝑖𝑛𝐴 𝑐𝑜𝑠𝐵 =1/2 [𝑠𝑖𝑛(𝐴+𝐵)+𝑠𝑖𝑛(𝐴−𝐵) ] Replace A by 3𝑥 & B by 3𝑥 sin3𝑥 cos3𝑥 = 1/2 [𝑠𝑖𝑛(3𝑥+3𝑥)+sin(3𝑥−3𝑥) ] = 1/2 [𝑠𝑖𝑛6𝑥+sin0 ] =1/2 [𝑠𝑖𝑛6𝑥 ] Hence ∫1▒〖sin3𝑥.cos𝑥 〗 𝑑𝑥 =1/2 ∫1▒[𝑠𝑖𝑛4𝑥+sin2𝑥 ] 𝑑𝑥 Hence ∫1▒〖cos3𝑥.sin3𝑥 〗 𝑑𝑥 =1/2 ∫1▒sin6𝑥 𝑑𝑥 Thus, our equation becomes ∫1▒sin〖𝑥 sin〖2𝑥 sin3𝑥 〗 〗 𝑑𝑥 =1/2 [∫1▒〖sin3𝑥 cos3𝑥 〗 𝑑𝑥−∫1▒〖sin3𝑥 cos3𝑥 〗 𝑑𝑥] =1/2 [1/2 ∫1▒(sin4𝑥+sin2𝑥 ) 𝑑𝑥−1/2 ∫1▒(sin6𝑥 ) 𝑑𝑥] =1/4 [∫1▒(sin4𝑥+sin2𝑥 ) 𝑑𝑥−∫1▒(sin6𝑥 ) 𝑑𝑥] =1/4 [∫1▒sin4𝑥 𝑑𝑥+∫1▒sin2𝑥 𝑑𝑥−∫1▒sin6𝑥 𝑑𝑥] ∫1▒sin(𝑎𝑥+𝑏) 𝑑𝑥=−𝑐𝑜𝑠(𝑎𝑥 + 𝑏)/𝑎 +𝐶 =1/4 [(−cos4𝑥)/4 +(〖−cos〗2𝑥/2) −((−cos6𝑥)/6)]+𝐶 =1/4 [(−cos4𝑥)/4 −cos2𝑥/2+cos6𝑥/6]+𝐶 =𝟏/𝟒 [𝒄𝒐𝒔𝟔𝒙/𝟔 −𝒄𝒐𝒔𝟒𝒙/𝟒 − 𝒄𝒐𝒔𝟐𝒙/𝟐 ]+𝑪