Chapter 7 Class 12 Integrals
Concept wise

Ex 7.3, 4 - Integrate sin3 (2x + 1) - Chapter 7 Class 12 Ex 7.3, 4 - Chapter 7 Class 12 Integrals - Part 2 Ex 7.3, 4 - Chapter 7 Class 12 Integrals - Part 3

Share on WhatsApp

πŸŽ‰ Smart choice! You just saved 2+ minutes of ads and got straight to the good stuff. That's what being a Teachoo Black member is all about.


Transcript

Ex 7.3, 4 sin3 (2π‘₯ + 1) We know that sin⁑3πœƒ=3 sinβ‘πœƒβˆ’4 sin^3β‘πœƒ 4 sin^3β‘πœƒ=3 sinβ‘πœƒβˆ’sin⁑3πœƒ sin^3β‘πœƒ=(3 sinβ‘πœƒ βˆ’ sin⁑3πœƒ)/4 Replace πœƒ by πŸπ’™+𝟏 sin^3⁑(2π‘₯+1)=(3 sin⁑(2π‘₯ + 1) βˆ’ sin⁑3(2π‘₯ + 1))/4 sin^3⁑(2π‘₯+1)=(3 sin⁑(2π‘₯ + 1) βˆ’ sin⁑(6π‘₯ + 3))/4 Thus, our equation becomes . ∫1β–’γ€–sin3 (2π‘₯+1) γ€— 𝑑π‘₯ =∫1β–’(3 sin⁑(2π‘₯ + 1) βˆ’ sin⁑(6π‘₯ + 3))/4 𝑑π‘₯ =1/4 ∫1β–’(3 sin⁑(2π‘₯+1)βˆ’sin⁑(6π‘₯+3) ) 𝑑π‘₯ =1/4 [3∫1β–’sin⁑(2π‘₯+1) 𝑑π‘₯βˆ’βˆ«1β–’sin⁑(6π‘₯+3) 𝑑π‘₯] =1/4 [3•×1/2 (βˆ’cos⁑(2π‘₯+1) )βˆ’1/6 (βˆ’cos⁑(6π‘₯+3)+𝐢)" " ] =1/4 [(βˆ’3)/2 cos⁑(2π‘₯+1)+1/6 cos⁑(6π‘₯+3) ]+𝐢 =(βˆ’3)/8 cos⁑(2π‘₯+1)+1/24 π’„π’π’”β‘πŸ‘(πŸπ’™+𝟏)+𝐢 ∫1β–’sin⁑(π‘Žπ‘₯+𝑏) 𝑑π‘₯=βˆ’γ€–π‘π‘œπ‘  〗⁑(π‘Žπ‘₯ + 𝑏)/π‘Ž +𝐢 We know that π‘π‘œπ‘ β‘3πœƒ=4 γ€–π‘π‘œπ‘ γ€—^3β‘πœƒβˆ’3 π‘π‘œπ‘ β‘πœƒ Replace πœƒ by 2π‘₯+1 π‘π‘œπ‘ β‘3(2π‘₯+1)=4 γ€–π‘π‘œπ‘ γ€—^3⁑(2π‘₯+1)βˆ’3 π‘π‘œπ‘ β‘(2π‘₯+1) =(βˆ’3)/8 cos⁑(2π‘₯+1)+1/24 [πŸ’ 〖𝒄𝒐𝒔〗^πŸ‘β‘(πŸπ’™+𝟏)βˆ’πŸ‘ 𝒄𝒐𝒔⁑(πŸπ’™+𝟏) ]+𝐢 =(βˆ’3)/8 cos⁑(2π‘₯+1)+4/24 cos^3⁑(2π‘₯+1)βˆ’3/24 cos⁑(2π‘₯+1)+𝐢 =(βˆ’3)/8 cos⁑(2π‘₯+1)+1/6 cos^3⁑(2π‘₯+1)βˆ’1/8 cos⁑(2π‘₯+1)+𝐢 =(βˆ’3)/8 cos⁑(2π‘₯+1)βˆ’1/8 cos⁑(2π‘₯+1)+1/6 cos^3⁑(2π‘₯+1)+𝐢 =(βˆ’4)/8 cos⁑(2π‘₯+1)+1/6 cos^3⁑(2π‘₯+1)+𝐢 =(βˆ’πŸ)/𝟐 𝒄𝒐𝒔⁑(πŸπ’™+𝟏)+𝟏/πŸ” 〖𝒄𝒐𝒔〗^πŸ‘β‘(πŸπ’™+𝟏)+π‘ͺ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo