Chapter 7 Class 12 Integrals
Concept wise

Slide5.JPG

Slide6.JPG

Go Ad-free

Transcript

Ex 7.3, 1 Find the integral of sin2 (2π‘₯ + 5) ∫1β–’γ€–π’”π’Šπ’πŸ (πŸπ’™ + πŸ“) γ€— 𝒅𝒙 =∫1β–’(1 βˆ’ γ€–π‘π‘œπ‘  2〗⁑(2π‘₯ + 5))/2 𝑑π‘₯ =1/2 ∫1β–’γ€–1βˆ’cos⁑(4π‘₯+10) γ€— 𝑑π‘₯ =1/2 [∫1β–’1 𝑑π‘₯βˆ’βˆ«1β–’cos⁑(4π‘₯+10) 𝑑π‘₯] We know that 𝐜𝐨𝐬 𝟐𝜽=πŸβˆ’πŸ γ€–π’”π’Šπ’γ€—^𝟐⁑𝜽 2 sin^2 πœƒ=1βˆ’cos⁑2πœƒ sin^2 πœƒ=1/2 [1βˆ’cos⁑2πœƒ ] Replace πœƒ by (𝟐𝐱+πŸ“) sin^2 (2π‘₯+5)=(1 βˆ’ cos⁑2(2π‘₯ + 5))/2 As ∫1β–’cos⁑(π‘Žπ‘₯+𝑏) 𝑑π‘₯=sin⁑(π‘Žπ‘₯ + 𝑏)/π‘Ž+𝐢 =1/2 [π‘₯βˆ’ sin⁑(4π‘₯ + 10)/4 +𝐢] =𝒙/𝟐 βˆ’ 𝟏/πŸ– π’”π’Šπ’β‘(πŸ’π’™+𝟏𝟎)+π‘ͺ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo