Chapter 7 Class 12 Integrals
Concept wise

Ex 7.2, 34 - Integrate root(tan x) / sin x cos x - teachoo

Ex 7.2, 34 - Chapter 7 Class 12 Integrals - Part 2
Ex 7.2, 34 - Chapter 7 Class 12 Integrals - Part 3
Ex 7.2, 34 - Chapter 7 Class 12 Integrals - Part 4

Go Ad-free

Transcript

Ex 7.2, 34 Integrate √(tan⁑π‘₯ )/sin⁑〖π‘₯ cos⁑π‘₯ γ€— Simplifying the function √(tan⁑π‘₯ )/sin⁑〖π‘₯ cos⁑π‘₯ γ€— = √(tan⁑π‘₯ )/(sin⁑〖π‘₯ cos⁑π‘₯ γ€—. cos⁑π‘₯/cos⁑π‘₯ ) = √(tan⁑π‘₯ )/(sin⁑π‘₯ . cos^2⁑π‘₯/cos⁑π‘₯ ) = √(tan⁑π‘₯ )/(cos^2⁑π‘₯ . (sin π‘₯)/cos⁑π‘₯ ) Concept: There are two methods to deal with π‘‘π‘Žπ‘›β‘π‘₯ (1) Convert into 𝑠𝑖𝑛⁑π‘₯ and π‘π‘œπ‘ β‘π‘₯ , then solve using the properties of 𝑠𝑖𝑛⁑π‘₯ and π‘π‘œπ‘ β‘π‘₯ . (2) Change into sec2x, as derivative of tan x is sec2 . Here, 1st Method is not applicable , so we have used 2nd Method . = √(tan⁑π‘₯ )/(cos^2⁑π‘₯ . tan⁑π‘₯ ) = (tan⁑π‘₯ )^(1/2 βˆ’ 1) Γ— 1/cos^2⁑π‘₯ = (tan⁑π‘₯ )^((βˆ’1)/2) Γ— 1/cos^2⁑π‘₯ = (tan⁑π‘₯ )^((βˆ’1)/2) Γ— sec^2⁑π‘₯ ∴ √(tan⁑π‘₯ )/sin⁑〖π‘₯ cos⁑π‘₯ γ€— " = " (tan⁑π‘₯ )^((βˆ’1)/2) " Γ— " sec^2⁑π‘₯ Step 2: Integrating the function ∫1β–’γ€– √(tan⁑π‘₯ )/sin⁑〖π‘₯ cos⁑π‘₯ γ€— γ€— . 𝑑π‘₯ = ∫1β–’γ€– (tan⁑π‘₯ )^((βˆ’1)/2) " Γ— " sec^2⁑π‘₯ γ€—. 𝑑π‘₯" " Let tan⁑π‘₯ = 𝑑 Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯ sec^2⁑π‘₯=𝑑𝑑/𝑑π‘₯ 𝑑π‘₯=𝑑𝑑/sec^2⁑π‘₯ Thus, our equation becomes ∴ ∫1β–’γ€– (tan⁑π‘₯ )^((βˆ’1)/2) " ." sec^2⁑π‘₯ γ€—. 𝑑π‘₯" " = ∫1β–’γ€– (𝑑)^((βˆ’1)/2) " " . sec^2⁑π‘₯ γ€—. 𝑑𝑑/sec^2⁑π‘₯ " " = ∫1▒〖𝑑^((βˆ’1)/2) . 𝑑𝑑〗 = 𝑑^(βˆ’ 1/2 +1)/(βˆ’ 1/2 +1) + 𝐢 = 𝑑^(1/2)/(1/2) + 𝐢 = γ€–2𝑑〗^(1/2)+ 𝐢 = 2βˆšπ‘‘+ 𝐢 = 𝟐√(π­πšπ§β‘π’™ )+ π‘ͺ (Using 𝑑=π‘‘π‘Žπ‘›β‘π‘₯)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo