Ex 7.2, 24 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Integration by substitution - Trignometric - Normal
Example 5 (i)
Ex 7.2, 22 Important
Misc 15
Example 35
Ex 7.2, 27
Ex 7.2, 31
Ex 7.2, 30
Ex 7.2, 26 Important
Ex 7.2, 24 You are here
Example 6 (i)
Ex 7.2, 29 Important
Ex 7.2, 21
Ex 7.2, 34 Important
Ex 7.2, 39 (MCQ) Important
Ex 7.2, 25
Ex 7.2, 32 Important
Ex 7.2, 33 Important
Misc 7 Important
Integration by substitution - Trignometric - Normal
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.2, 24 2 cos𝑥 − 3 sin𝑥6 cos𝑥 + 4 sin𝑥 Step 1: Let 6 cos𝑥 + 4 sin𝑥=𝑡 Differentiating both sides 𝑤.𝑟.𝑡.𝑥 −6 sin𝑥 + 4 co𝑠𝑥= 𝑑𝑡𝑑𝑥 4 cos𝑥−6 sin𝑥𝑑𝑥 =𝑑𝑡 𝑑𝑥 = 𝑑𝑡4 cos𝑥 − 6 sin𝑥 Step 2: Integrating the function 2 cos𝑥 − 3 sin𝑥6 cos𝑥 + 4 sin𝑥 . 𝑑𝑥 Putting 6 𝑐𝑜𝑠𝑥+4 𝑠𝑖𝑛𝑥=𝑡 & 𝑑𝑥= 𝑑𝑡4 cos𝑥 − 6 sin𝑥 = 2 cos𝑥 − 3 sin𝑥𝑡 . 𝑑𝑥 = 2 cos𝑥 − 3 sin𝑥𝑡 . 𝑑𝑡4 cos𝑥 − 6 sin𝑥 = 2 cos𝑥 − 3 sin𝑥𝑡 . 𝑑𝑡2 2 cos𝑥 − 3 sin𝑥 = 12𝑡. 𝑑𝑡 = 12 𝑑𝑡𝑡 = 12 log 𝑡+𝐶1 = 12 log 4 sin𝑥+6 cos𝑥+𝐶1 = 12 log 2 2 sin𝑥+3 cos𝑥+𝐶1 = 12 log 2+𝑙𝑜𝑔 2 sin𝑥+3 cos𝑥+𝐶1 = 12 log 2+ 12 𝑙𝑜𝑔 2 sin𝑥+3 cos𝑥+𝐶1 = 𝟏𝟐 𝒍𝒐𝒈 𝟐 𝒔𝒊𝒏𝒙+𝟑 𝒄𝒐𝒔𝒙+𝑪