Question 6 - Chapter 7 Class 12 Integrals (Important Question)
Last updated at Dec. 16, 2024 by Teachoo
Chapter 7 Class 12 Integrals
Ex 7.1, 18 Important
Ex 7.1, 20
Ex 7.2, 20 Important
Ex 7.2, 26 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.3, 6 Important
Ex 7.3, 13 Important
Ex 7.3, 18 Important
Ex 7.3, 22 Important
Ex 7.3, 24 (MCQ) Important
Example 9 (i)
Example 10 (i)
Ex 7.4, 8 Important
Ex 7.4, 15 Important
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 25 (MCQ) Important
Example 15 Important
Ex 7.5, 9 Important
Ex 7.5, 11 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 21 Important
Example 20 Important
Example 22 Important
Ex 7.6, 13 Important
Ex 7.6, 14 Important
Ex 7.6, 18 Important
Ex 7.6, 19
Ex 7.6, 24 (MCQ) Important
Ex 7.7, 5 Important
Ex 7.7, 10
Ex 7.7, 11 Important
Question 1 Important
Question 4 Important
Question 6 Important You are here
Example 25 (i)
Ex 7.8, 15
Ex 7.8, 16 Important
Ex 7.8, 20 Important
Ex 7.8, 22 (MCQ)
Ex 7.9, 4
Ex 7.9, 7 Important
Ex 7.9, 8
Ex 7.9, 9 (MCQ) Important
Example 28 Important
Example 32 Important
Example 34 Important
Ex 7.10,8 Important
Ex 7.10, 18 Important
Example 38 Important
Example 39 Important
Example 42 Important
Misc 18 Important
Misc 8 Important
Question 1 Important
Misc 23 Important
Misc 29 Important
Question 2 Important
Misc 38 (MCQ) Important
Question 4 (MCQ) Important
Integration Formula Sheet Important
Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Question 6 β«1_0^4β(π₯+π2π₯)ππ₯ Let I = β«1_0^4β(π₯+π2π₯)ππ₯ I = β«1_0^4βγπ₯ . ππ₯γ+β«1_0^4βγ π2π₯ . ππ₯γ Solving I1 and I2 separately Solving I1 β«1_0^4βγπ₯ ππ₯γ Putting π =0 π =4 β=(π β π)/π =(4 β 0)/π =4/π π(π₯)=π₯ We know that β«1_π^πβγπ₯ ππ₯γ =(πβπ) (πππ)β¬(πββ) 1/π (π(π)+π(π+β)+π(π+2β)β¦+π(π+(πβ1)β)) Hence we can write β«1_0^4βγπ₯ ππ₯γ =(4β0) limβ¬(nββ) 1/π (π(0)+π(0+β)+π(0+2β)+β¦ +π(0+(πβ1)β) =4 limβ¬(nββ) 1/π (π(0)+π(β)+π(2β)+β¦ +π((πβ1)β) Here, π(π₯)=π₯ π(0)=0 π(β)=β π (2β)=2β π((πβ1)β)=(πβ1)β Hence, our equation becomes β΄ β«_0^4βπ₯ ππ₯ =4 limβ¬(nββ) 1/π (π(0)+π(β)+π(2β)+β¦ +π((πβ1)β) = 4 (πππ)β¬(πββ) 1/π (0+β+2β+ β¦β¦+(πβ1)β) = 4 (πππ)β¬(πββ) 1/π ( β (1+2+ β¦β¦β¦+(πβ1))) We know that 1+2+3+ β¦β¦+π= (π (π + 1))/2 1+2+3+ β¦β¦+πβ1= ((π β 1) (π β 1 + 1))/2 = (π (π β 1) )/2 = 4 (πππ)β¬(πββ) 1/π ( (β . π(π β 1))/2) = 4 (πππ)β¬(πββ) ( π(π β 1)β/2π) = 4 (πππ)β¬(πββ) ( (π β 1)β/2) = 4 (πππ)β¬(πββ) ( (π β 1)4/(2 . π)) = 4 (πππ)β¬(πββ) ( 2(π/π β 1/π)) = 4 (πππ)β¬(πββ) ( 2(1β 1/π)) = 4( 2(1β 1/β)) [ππ πππ β=4/π] = 4( 2(1β0)) = 4Γ2 = π Solving I2 β«_0^4βπ^2π₯ ππ₯ Putting π = 0 π =4 β = (π β π)/π = (4 β 0)/π = 4/π π(π₯)=π^2π₯ We know that β«1_π^πβγπ₯ ππ₯γ =(πβπ) (πππ)β¬(πββ) 1/π (π(π)+π(π+β)+π(π+2β)β¦+π(π+(πβ1)β)) Hence we can write β«_0^4βπ^2π₯ ππ₯ =(4β0) limβ¬(nββ) 1/π (π(0)+π(0+β)+π(0+2β)+β¦ +π(0+(πβ1)β) =4 limβ¬(nββ) 1/π (π(0)+π(β)+π(2β)β¦β¦+π((πβ1)β) Here, π(π₯)=π^2π₯ π(0)=π^(2(0))=1 π(β)=π^2β π(2β)=π^(2(2β))=π^4β π((πβ1)β)=π^2(πβ1)β Hence we can write β«_0^4βπ^2π₯ ππ₯ =(4β0) limβ¬(nββ) 1/π (π(0)+π(0+β)+π(0+2β)+β¦ +π(0+(πβ1)β) =4 limβ¬(nββ) 1/π (π(0)+π(β)+π(2β)β¦β¦+π((πβ1)β) Here, π(π₯)=π^2π₯ π(0)=π^(2(0))=1 π(β)=π^2β π(2β)=π^(2(2β))=π^4β π((πβ1)β)=π^2(πβ1)β Hence, our equation becomes β΄ β«_0^4βπ^2π₯ ππ₯ =4 limβ¬(nββ) 1/π (π(0)+π(β)+π(2β)β¦β¦+π(πβ1)β) = 4 .limβ¬(nββ) 1/π (1+π^2β+π^4β+ β¦β¦+π^(2(π β 1) β) ) Let S = 1+π^2β+π^4β+ β¦β¦+π^(2(π β 1) β) It is a G.P. with common ratio (r) r = π^2β/1 = π^2β We know Sum of G.P = a((π^π β 1)/(π β 1)) Replacing a by 1 and r by π^2β , we get S = 1(((π^2β )^π β 1)/(π^2β β 1))= (π^2πβ β 1)/(π^2β β 1) Thus β΄ β«_0^4βπ^π₯ ππ₯ = 4 limβ¬(nββ) 1/π (1+π^2β+π^4β+ β¦β¦+π^(2(π β 1) β) ) Putting the value of S, we get = 4 .limβ¬(nββ) 1/π ((π^2πβ β 1)/(π^2β β 1)) = 4 (πππ)β¬(πββ) 1/π ((π^2πβ β 1)/(2β . (π^2β β 1)/2β)) = 4 (πππ)β¬(πββ) (π^2πβ β 1)/2πβ . 1/( (π^2β β 1)/2β) = 4 (πππ)β¬(πββ) (π^2πβ β 1)/2πβ . (πππ)β¬(πββ) 1/( (π^2β β 1)/2β) Solving (π₯π’π¦)β¬(π§ββ) ( π)/(( π^ππ β π)/ππ) As nββ β 2/β ββ β β β0 β΄ limβ¬(nββ) ( 1)/(( π^2β β 1)/2β) = limβ¬(hβ0) ( 1)/(( π^2β β 1)/2β) = 1/1 = 1 Thus, our equation becomes β«1_0^4βγππ₯ ππ₯γ ="4" (πππ)β¬(πββ) (π^2πβ β 1)/2πβ . (πππ)β¬(πββ) 1/( (π^2β β 1)/2β) " " = "4" (πππ)β¬(πββ) (π^2πβ β 1)/2πβ . 1 = 4 (πππ)β¬(πββ) (π^(2π . 4/π) β 1)/(2π (4/π) ) = 4 (πππ)β¬(πββ) (π^8 β 1)/8 (ππ πππ (πππ)β¬(π‘β0) (π^π‘ β 1)/π‘ =1) (ππ πππ β=4/π) = 4 (π^8 β 1)/8 = (π^π β π)/π Putting the values of I1 and I2 in I β΄ I = β«1_0^4βγπ₯ . ππ₯γ+β«1_0^4βγ π2π₯ . ππ₯γ = 8 + (π^8 β 1)/2 = (16 + π^8 β 1)/2 = (ππ + π^π)/π