This Question was also asked in CBSE Maths Board Exam - 2020 (Question 34 - Set 65/5/1)
Chapter 7 Class 12 Integrals
Ex 7.1, 18 Important
Ex 7.1, 20
Ex 7.2, 20 Important
Ex 7.2, 26 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.3, 6 Important
Ex 7.3, 13 Important
Ex 7.3, 18 Important
Ex 7.3, 22 Important
Ex 7.3, 24 (MCQ) Important
Example 9 (i)
Example 10 (i)
Ex 7.4, 8 Important
Ex 7.4, 15 Important
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 25 (MCQ) Important
Example 15 Important
Ex 7.5, 9 Important
Ex 7.5, 11 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 21 Important
Example 20 Important
Example 22 Important
Ex 7.6, 13 Important
Ex 7.6, 14 Important
Ex 7.6, 18 Important
Ex 7.6, 19
Ex 7.6, 24 (MCQ) Important
Ex 7.7, 5 Important
Ex 7.7, 10
Ex 7.7, 11 Important
Question 1 Important
Question 4 Important You are here
Question 6 Important
Example 25 (i)
Ex 7.8, 15
Ex 7.8, 16 Important
Ex 7.8, 20 Important
Ex 7.8, 22 (MCQ)
Ex 7.9, 4
Ex 7.9, 7 Important
Ex 7.9, 8
Ex 7.9, 9 (MCQ) Important
Example 28 Important
Example 32 Important
Example 34 Important
Ex 7.10,8 Important
Ex 7.10, 18 Important
Example 38 Important
Example 39 Important
Example 42 Important
Misc 18 Important
Misc 8 Important
Question 1 Important
Misc 23 Important
Misc 29 Important
Question 2 Important
Misc 38 (MCQ) Important
Question 4 (MCQ) Important
Integration Formula Sheet Important
Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Question 4 β«1_1^4β(π₯2 βπ₯)ππ₯ Let I = β«1_1^4β(π₯2 βπ₯)ππ₯ I = β«1_1^4βγ π₯2 ππ₯γββ«1_1^4βγ π₯ ππ₯γ Solving I1 and I2 separately Solving I1 β«1_1^4βγπ₯2 ππ₯γ Putting π =1 π =4 β=(π β π)/π =(4 β 1)/π =3/π π(π₯)=π₯^2 We know that β«1_π^πβγπ₯ ππ₯γ =(πβπ) (πππ)β¬(πββ) 1/π (π(π)+π(π+β)+π(π+2β)β¦+π(π+(πβ1)β)) Hence we can write β«1_1^4βγπ₯2 ππ₯γ =(4β1) (πππ)β¬(πββ) 1/π (π(1)+π(1+β)+π(1+2β)+ β¦+π(1+(πβ1)β)) =3 (πππ)β¬(πββ) 1/π (π(1)+π(1+β)+π(1+2β)+ β¦+π(1+(πβ1)β)) Here, π(π₯)=π₯^2 π(1)=(1)^2=1 π(1+β)=(1+β)^2 π (1+2β)=(1+2β)^2 β¦ π(1+(πβ1)β)=(1+(πβ1)β)^2 Hence, our equation becomes β«1_1^4βγπ₯2 ππ₯γ " " =3 (πππ)β¬(πββ) 1/π (π(1)+π(1+β)+π(1+2β)+ β¦+π(1+(πβ1)β)) =3 (πππ)β¬(πββ) 1/π ((1)^2+(1+β)^2+(1+2β)^2+ β¦+(1+(πβ1)β)^2 ) =3 (πππ)β¬(πββ) 1/π (β(1^2+(1^2+β^2+2β)+γ(1γ^2+ (2β)^2+4β)+ β¦β¦ @ β¦+(1^2+((πβ1)β)^2+2(πβ1) β) )) =3 (πππ)β¬(πββ) 1/π [1^2+1^2+ β¦ +1^2 ] + β^2+(2β)^2+ β¦ +(πβ1)β^2 + [2β+4β+ β¦ +2(πβ1)β] =3 (πππ)β¬(πββ) 1/π (γπ(1)γ^2+[β^2+(2)^2 . β^2+ β¦ +(πβ1)^2 β^2 ] +[2β+2Γ2β+ β¦ +(πβ1)Γ2β] ) =3 (πππ)β¬(πββ) 1/π(π+π^2 [(1)^2+(2)^2+ β¦+(πβ1)^2 ] +ππ [1+2+ β¦+(πβ1)]) =3 (πππ)β¬(πββ) 1/π (π+β^2 [π(π β 1)(2π β 1)/6]+2β[π(π β 1)/2] ) We know that 1^2+2^2+ β¦+π^2= (π (π + 1)(2π + 1))/6 1^2+2^2+ β¦β¦+(πβ1)^2 = ((π β 1) (π β1 + 1)(2(π β 1) + 1))/6 = ((π β 1) π (2π β 2 + 1) )/6 = (π (π β 1) (2π β 1) )/6 We know that 1+2+3+ β¦β¦+π= (π (π + 1))/2 1+2+3+ β¦β¦+(πβ1) = ((π β 1) (π β 1 + 1))/2 = (π (π β 1) )/2 =3 (πππ)β¬(πββ) 1/π (π+β^2 [π(π β 1)(2π β 1)]/6+β[π(π β 1)] ) =3 (πππ)β¬(πββ) (π/π+β^2 [π(π β 1)(2π β 1)/6π]+β[π(π β 1)/π]) =3 (πππ)β¬(πββ) (1+β^2 [(π β 1)(2π β 1)/6]+β[(π β 1)]) =3 (πππ)β¬(πββ) (1+(3/π)^2 (π β 1)(2π β 1)/6+(3/π)(π β 1)) =3 (πππ)β¬(πββ) (1+9/π^2 . (π β 1)(2π β 1)/6 +3(1 β 1/π)) =3 (πππ)β¬(πββ) (1+ 9(1 β 1/π)(2 β 1/π)/6 +3(1 β 1/π)) =3(1+ 9(1 β 1/β)(2 β 1/β)/6 +3(1 β 1/β)) =3(1+ 9(1 β 0)(2 β 0)/6 +3(1 β0)) =3(1+ (9 Γ 1 Γ 2)/6 +3) =3(1+3+3) =3Γ7 =ππ Solving I2 β«1_1^4βγπ₯ ππ₯γ Putting π =1 π =4 β=(π β π)/π =(4 β 1)/π =3/π π(π₯)=π₯ We know that β«1_π^πβγπ₯ ππ₯γ =(πβπ) (πππ)β¬(πββ) 1/π (π(π)+π(π+β)+π(π+2β)β¦+π(π+(πβ1)β)) Hence we can write β«1_1^4βγπ₯ ππ₯γ =(4β1) limβ¬(nββ) 1/π (π(1)+π(1+β)+π(1+2β)+β¦ +π(1+(πβ1)β) =3 limβ¬(nββ) 1/π (π(1)+π(1+β)+π(1+2β)+β¦ +π(1+(πβ1)β) Here, π(π₯)=π₯ π(1)=1 π(1+β)=1+β π (1+2β)=1+2β π(1+(πβ1)β)=1+(πβ1)β Hence, our equation becomes β«_1^4βπ₯ ππ₯ =3 limβ¬(nββ) 1/π (π(1)+π(1+β)+π(1+2β)+β¦ +π(1+(πβ1)β) = 3 (πππ)β¬(πββ) 1/π (1+(1+β)+(1+2β)+ β¦+(1+(πβ1)β)) = 3 (πππ)β¬(πββ) 1/π (1+1+ β¦+1 +β+2β+ β¦β¦+(πβ1)β) = 3 (πππ)β¬(πββ) 1/π ( π\ Γ1+β (1+2+ β¦β¦β¦+(πβ1))) We know that 1+2+3+ β¦β¦+π= (π (π + 1))/2 1+2+3+ β¦β¦+πβ1= ((π β 1) (π β 1 + 1))/2 = (π (π β 1) )/2 = 3 (πππ)β¬(πββ) 1/π ( π+(β . π(π β 1))/2) = 3 (πππ)β¬(πββ) ( π/π+π(π β 1)β/2π) = 3 (πππ)β¬(πββ) ( 1+(π β 1)β/2) = 3 (πππ)β¬(πββ) ( 1+(π β 1)3/(2 . π)) = 3 (πππ)β¬(πββ) ( 1+(π/π β 1/π) 3/2) [ππ πππ β=3/π] = 3 (πππ)β¬(πββ) ( 1+(1β 1/π) (3 )/2) = 3( 1+(1β 1/β) (3 )/2) = 3( 1+(1β0) 3/2) = 3(1+ (3 )/2) = 3((5 )/2) = ππ/π Putting the values of I1 and I2 in I β΄ "I = " β«1_1^4βγ π₯2 ππ₯γββ«1_1^4βγ π₯ ππ₯γ = 21 β 15/2 = (42 β 15)/2 = ππ/π