Ex 7.8, 20 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Definite Integration - By Formulae
Example 27 (i)
Ex 7.8, 3
Ex 7.8, 6
Ex 7.8, 2
Misc 28
Ex 7.8, 4 Important
Ex 7.8, 5
Ex 7.8, 7
Ex 7.8, 8 Important
Ex 7.8, 17 Important
Ex 7.8, 12
Ex 7.8, 18
Misc 35
Misc 36 Important
Ex 7.9, 2 Important
Ex 7.8, 20 Important You are here
Ex 7.8, 9
Ex 7.8, 10
Ex 7.8, 21 (MCQ) Important
Ex 7.8, 22 (MCQ)
Ex 7.8, 14 Important
Ex 7.8, 19 Important
Ex 7.9, 10 (MCQ) Important
Ex 7.9, 8
Misc 33
Misc 37
Ex 7.9, 3 Important
Definite Integration - By Formulae
Last updated at April 16, 2024 by Teachoo
Ex 7.8, 20 β«_0^1β(π₯ π^π₯+sinβ‘γππ₯/4γ ) ππ₯ Let F(π₯)=β«1β(π₯π^π₯+π ππ ππ₯/4)ππ₯ =β«1βγπ₯π^π₯ ππ₯+β«1βγsinβ‘(ππ₯/4) ππ₯γγ Solving I1 and I2 separately Solving π°π β«1βγπ₯π^π₯ ππ₯γ =π₯β«1βγπ^π₯ ππ₯ββ«1β[(ππ₯/ππ₯) β«1βγπ^π₯ ππ₯γ]ππ₯γ =π₯π^π₯ββ«1β(1.π^π₯ ππ₯)ππ₯ =π₯π^π₯ββ«1βγπ^π₯ ππ₯γ =π₯π^π₯βπ^π₯ =π^π₯ (π₯β1) Solving I2 β«1βγsinβ‘(ππ₯/4) ππ₯γ = 1/(π/4) (βcosβ‘(ππ₯/4) ) = (β4)/π cosβ‘(ππ₯/4) Therefore, F(π₯)=β«1βγπ₯π^π₯ ππ₯+β«1βγπ ππ π/4 π₯ ππ₯γγ =π^π₯ (π₯β1)β4/π cosβ‘(ππ₯/4) Now, β«_0^1β(π₯π^π₯+π ππ ππ₯/4) ππ₯=πΉ(1)βπΉ(0) =(π^1 (1β1)β4/π cosβ‘((π Γ 1)/4) )β(π^0 (0β1)+4/π πππ ((π Γ 0)/4)) =πΓ0β4/π πππ π/4β1(β1)+4/π cosβ‘0 =(β4)/( π) πππ π/4+1+4/π =(β4)/( π) 1/β2+1+4/π =(β2β2)/( π) +1+4/π =π+π/π β(πβπ)/π