Chapter 7 Class 12 Integrals
Concept wise

  Slide46.JPG

Slide47.JPG
Slide48.JPG
Slide49.JPG

Go Ad-free

Transcript

Ex 7.8, 19 โˆซ_0^2โ–’(6๐‘ฅ + 3)/(๐‘ฅ^2 + 4) ๐‘‘๐‘ฅ Let F(๐‘ฅ)=โˆซ1โ–’ใ€–(6๐‘ฅ + 3)/(๐‘ฅ^2 + 4) ๐‘‘๐‘ฅใ€— =โˆซ1โ–’ใ€–6๐‘ฅ/(๐‘ฅ^2 + 4) ๐‘‘๐‘ฅ+โˆซ1โ–’ใ€–3/(๐‘ฅ^2 + 4) ๐‘‘๐‘ฅ ใ€—ใ€— Solving ๐‘ฐ๐Ÿ ๐ผ1=โˆซ1โ–’ใ€–6๐‘ฅ/(๐‘ฅ^2 + 4) ๐‘‘๐‘ฅใ€— Put ๐‘ฅ^2 + 4=๐‘ก Differentiating w.r.t.๐‘ฅ ๐‘‘/๐‘‘๐‘ฅ (๐‘ฅ^2+4)=๐‘‘๐‘ก/๐‘‘๐‘ฅ 2๐‘ฅ+0=๐‘‘๐‘ก/๐‘‘๐‘ฅ ๐‘‘๐‘ฅ=๐‘‘๐‘ก/2๐‘ฅ Therefore, โˆซ1โ–’ใ€–6๐‘ฅ/(๐‘ฅ^2 + 4) ๐‘‘๐‘ฅ=โˆซ1โ–’ใ€–6๐‘ฅ/๐‘ก ๐‘‘๐‘ก/2๐‘ฅใ€—ใ€— =โˆซ1โ–’ใ€–3/๐‘ก ๐‘‘๐‘กใ€— =3 ๐‘™๐‘œ๐‘”|๐‘ก| =3 ๐‘™๐‘œ๐‘”|๐‘ฅ^2+4| Solving ๐‘ฐ๐Ÿ ๐ผ2=โˆซ1โ–’ใ€–3/(๐‘ฅ^2 + 4) ๐‘‘๐‘ฅใ€— =3โˆซ1โ–’1/(๐‘ฅ^2+4) ๐‘‘๐‘ฅ =3โˆซ1โ–’1/(๐‘ฅ^2 + 2^2 ) ๐‘‘๐‘ฅ =3 ร— 1/2 tan^(โˆ’1)โกใ€–๐‘ฅ/2ใ€— =3/2 tan^(โˆ’1)โกใ€–๐‘ฅ/2ใ€— Therefore F(๐‘ฅ)= ๐ผ1+๐ผ2 F(๐‘ฅ)=3๐‘™๐‘œ๐‘”|๐‘ฅ^2+4|+3/2 tan^(โˆ’1)โกใ€–๐‘ฅ/2ใ€— Now, โˆซ_0^2โ–’ใ€–(6๐‘ฅ + 3)/(๐‘ฅ^2 + 4) ๐‘‘๐‘ฅ=๐น(2)โˆ’๐น(0) ใ€— =3๐‘™๐‘œ๐‘”|2^2+4|+3/2 tan^(โˆ’1)โกใ€–2/2โˆ’3๐‘™๐‘œ๐‘”|0+4|โˆ’3/2 tan^(โˆ’1)โก(0/2) ใ€— =3๐‘™๐‘œ๐‘”|4+4|+3/2 tan^(โˆ’1)โกใ€–1โˆ’3๐‘™๐‘œ๐‘”|4|โˆ’3/2 ร— 0ใ€— =3๐‘™๐‘œ๐‘”|8|โˆ’3๐‘™๐‘œ๐‘”|4|+3/2 ๐œ‹/4 =3(๐‘™๐‘œ๐‘”|8|โˆ’๐‘™๐‘œ๐‘”|4|)+3๐œ‹/8 =3๐‘™๐‘œ๐‘”|8/4|+3๐œ‹/8 =๐Ÿ‘ ๐ฅ๐จ๐ โกใ€–๐Ÿ+๐Ÿ‘๐…/๐Ÿ–ใ€—

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo