Chapter 7 Class 12 Integrals
Concept wise

Ex 7.8, 16 - Direct Integrate 5x2 / x2 + 4x + 3 dx from 1 to 2 - Ex 7.8

part 2 - Ex 7.8, 16 - Ex 7.8 - Serial order wise - Chapter 7 Class 12 Integrals
part 3 - Ex 7.8, 16 - Ex 7.8 - Serial order wise - Chapter 7 Class 12 Integrals
part 4 - Ex 7.8, 16 - Ex 7.8 - Serial order wise - Chapter 7 Class 12 Integrals
part 5 - Ex 7.8, 16 - Ex 7.8 - Serial order wise - Chapter 7 Class 12 Integrals

Remove Ads

Transcript

Ex 7.8, 16 ∫_1^2ā–’(5š‘„^2)/(š‘„^2 + 4š‘„ + 3) š‘‘š‘„ Let F(š‘„)=∫1▒〖(5š‘„^2)/(š‘„^2 + 4š‘„ + 3) š‘‘š‘„ć€— =5∫1ā–’ć€–š’™^šŸ/(š‘„^2 + 4š‘„ + 3) š‘‘š‘„ć€— =5∫1▒〖(š’™^šŸ + šŸ’š’™ + šŸ‘ āˆ’ šŸ’š’™ āˆ’ šŸ‘)/(š’™^šŸ + šŸ’š’™ + šŸ‘) š‘‘š‘„ć€— =5∫1▒〖(š‘„^2 + 4š‘„ + 3)/(š‘„^2 + 4š‘„ + 3) š‘‘š‘„ć€—āˆ’5∫1▒〖( (4š‘„ + 3))/(š‘„^2 + 4š‘„ + 3) š‘‘š‘„ć€— =∫1▒〖(šŸ“āˆ’(šŸšŸŽš’™ + šŸšŸ“ )/(š’™^šŸ + šŸ’š’™ + šŸ‘)) š’…š’™ć€— =∫1▒〖(5āˆ’(20š‘„ + 15 )/(š‘„^2 + 3š‘„ + š‘„ + 3)) š‘‘š‘„ć€— =∫1▒〖(5āˆ’(20š‘„ + 15 )/(š‘„(š‘„ + 3) + 1(š‘„ + 3))) š‘‘š‘„ć€— =∫1▒〖(šŸ“āˆ’(šŸšŸŽš’™ + šŸšŸ“ )/((š’™ + šŸ‘) (š’™ + šŸ))) š’…š’™ć€— Now, Let (šŸšŸŽš’™ + šŸšŸ“)/(š’™ + šŸ‘)(š’™ + šŸ) =š€/(š’™ + šŸ‘)+š/(š’™ + šŸ) (20š‘„ + 15)/(š‘„ + 3)(š‘„ + 1) =(A(š‘„ + 1) + B(š‘„ + 3))/(š‘„ + 3)(š‘„ + 1) Canceling denominator 20š‘„+15=A(š‘„ + 1) + B(š‘„ + 3) Putting š’™=āˆ’šŸ 20(āˆ’1)+15=A(āˆ’1 + 1) + B(āˆ’1 + 3) āˆ’20+15=AƗ0+B (2) āˆ’5=2B š=(āˆ’šŸ“)/( šŸ) Putting š’™=āˆ’šŸ‘ 20(āˆ’3)+15=A(āˆ’3+1)+B(āˆ’3+3) āˆ’60+15=A(āˆ’2) BƗ0 āˆ’45=āˆ’2A š‘Ø=šŸ’šŸ“/šŸ Hence ∫1ā–’ā–ˆ((šŸ“š’™^šŸ)/(š’™^šŸ + šŸ’š’™ + šŸ‘) " " =∫1▒〖(5āˆ’(20š‘„ + 15 )/(š‘„^2 + 4š‘„ + 3)) š‘‘š‘„ć€—) =∫1▒〖5āˆ’A/(š‘„ + 3)āˆ’ć€— B/(š‘„ + 1) š‘‘š‘„ =∫1ā–’ć€–šŸ“ š’…š’™ć€—āˆ’āˆ«1▒〖(šŸ’šŸ“/šŸ)/(š’™ + šŸ‘) š’…š’™āˆ’āˆ«1▒〖(((āˆ’šŸ“)/( šŸ)))/(š’™ + šŸ) š’…š’™ć€—ć€— =5š‘„āˆ’45/2 š‘™š‘œš‘”|š‘„+3|+5/2 š‘™š‘œš‘”|š‘„+1| Hence F(š’™)=šŸ“š’™āˆ’šŸ“/šŸ [šŸ— š’š’š’ˆ|š’™+šŸ‘|āˆ’š’š’š’ˆ|š’™+šŸ|] Now, ∫_1^2▒〖(šŸ“š’™^šŸ)/(š’™^šŸ + šŸ’š’™ + šŸ‘) š’…š’™=š¹(2)āˆ’š¹(1) 怗 =[5 Ɨ 2āˆ’5/2 (9 š‘™š‘œš‘”|2+3|āˆ’š‘™š‘œš‘”|2+1|)] āˆ’ [5 Ɨ 1āˆ’5/2 (9 š‘™š‘œš‘”|1+3|āˆ’š‘™š‘œš‘”|1+1|)] =10āˆ’5/2 [9 š‘™š‘œš‘” 5āˆ’š‘™š‘œš‘” 3]āˆ’5+5/2 [9 š‘™š‘œš‘” 4āˆ’š‘™š‘œš‘” 2] =10āˆ’5āˆ’5/2 [9š‘™š‘œš‘” 5āˆ’š‘™š‘œš‘” 3āˆ’9š‘™š‘œš‘” 4+š‘™š‘œš‘” 2)] =10āˆ’5āˆ’5/2 [9š‘™š‘œš‘” 5āˆ’9š‘™š‘œš‘” 4āˆ’(š‘™š‘œš‘” 3āˆ’š‘™š‘œš‘” 2)] =šŸ“āˆ’šŸ“/šŸ (šŸ— š„šØš  šŸ“/šŸ’āˆ’š„šØš  šŸ‘/šŸ)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo