Chapter 7 Class 12 Integrals
Concept wise

Slide15.JPG

Slide16.JPG
Slide17.JPG
Slide18.JPG
Slide19.JPG

Go Ad-free

Transcript

Ex 7.9, 6 Evaluate the integrals using substitution ∫_0^(2 )▒𝑑𝑥/(𝑥 + 4 − 𝑥^2 ) We can write ∫_0^2▒〖𝑑𝑥/(𝑥 + 4 − 𝑥^2 )=∫_0^2▒𝑑𝑥/(−(𝑥^2 − 𝑥 − 4) )〗 =−∫_0^2▒𝑑𝑥/(𝑥^2 − 𝑥 − 4) =−∫_0^2▒𝑑𝑥/(𝑥^2 −2 × 1/2 × 𝑥 − 4) =−∫_0^2▒𝑑𝑥/(𝑥^2 −2 × 1/2 × 𝑥 + 1/2^2 − 1/2^2 − 4) =−∫_0^2▒𝑑𝑥/((𝑥 − 1/2)^2− 1/4 − 4) =−∫_0^2▒𝑑𝑥/((𝑥 − 1/2)^2− 17/4 ) =−∫_0^2▒𝑑𝑥/((𝑥 − 1/2)^2− (√17/4)^2 ) Let 𝑡=𝑥−1/2 Differentiating w.r.t.𝑥 𝑑𝑡/𝑑𝑥=1 𝑑𝑡=𝑑𝑥 When x varies from 0 to 2, then t varies from (−1)/2 to 3/2. Therefore, −∫_0^2▒〖𝑑𝑥/((𝑥 − 1/2)^2−(√17/2)^2 )=−∫_((−1)/2)^(3/2)▒𝑑𝑡/(𝑡 − (√17/2)^2 )〗 =−[1/2(√17/2) 𝑙𝑜𝑔|(𝑡 − √17/2)/(𝑡 + √17/2)|]_((−1)/( 2))^(3/2) =−1/√17 [𝑙𝑜𝑔|(3/2 − √17/2)/(3/2 + √17/2)|+𝑙𝑜𝑔|((−1)/( 2) − √17/2)/((−1)/( 2) + √17/2)|] =−1/√17 [𝑙𝑜𝑔|(3 − √17)/(3 + √17)|+𝑙𝑜𝑔|(−(1 + √17))/(−(1 − √17) )|] =−1/√17 𝑙𝑜𝑔|((3 − √17)/(3 + √17))/((1 + √17)/(1 − √17))| =−1/√17 𝑙𝑜𝑔|(3 − √17)/(3 + √17) ×(1 − √17)/(1 + √17)| =−1/√17 𝑙𝑜𝑔|(3+17 − 3√17 − √17)/(3 +17 + 3√17 + √17) | =−1/√17 𝑙𝑜𝑔|(20 − 4√17)/(20 + 4√17) | =−1/√17 𝑙𝑜𝑔|4(5 − √17)/4(5 + √17) | =−1/√17 𝑙𝑜𝑔|(5 − √17)/(5 + √17) | =1/√17 𝑙𝑜𝑔|(5 − √17)/(5 + √17) |^(−1) =1/√17 𝑙𝑜𝑔|(5 + √17)/(5 − √17)| =1/√17 𝑙𝑜𝑔|(5 + √17)/(5 − √17) ×(5 + √17)/(5 + √17)| =1/√17 𝑙𝑜𝑔|(5 − √17)^2/(5^2 − (√17)^2 ) | =1/√17 𝑙𝑜𝑔|(25 + 17 + 10√17)/(25 − 17) | =1/√17 𝑙𝑜𝑔|(42 + 10√17)/8 | =𝟏/√𝟏𝟕 𝒍𝒐𝒈|(𝟐𝟏 + 𝟓√𝟏𝟕)/𝟒 |

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo