Chapter 7 Class 12 Integrals
Concept wise

Slide13.JPG

Slide14.JPG

Go Ad-free

Transcript

Ex 7.9, 5 Evaluate the integrals using substitution ∫_0^(πœ‹/2 )β–’sin⁑π‘₯/(1 + cos^2⁑π‘₯ )⁑〖 𝑑π‘₯γ€— ∫_0^(πœ‹/2 )β–’sin⁑π‘₯/(1 + cos^2⁑π‘₯ )⁑〖 𝑑π‘₯γ€— Put cos π‘₯=𝑑 Differentiating w.r.t.π‘₯ βˆ’sin⁑π‘₯=𝑑𝑑/𝑑π‘₯ 𝑑π‘₯=(βˆ’π‘‘π‘‘)/sin⁑π‘₯ Hence when π‘₯ varies from 0 to πœ‹/2, 𝑑 varies from 1 to 0 Therefore, we can write ∫_0^(πœ‹/2)β–’sin⁑π‘₯/(1+γ€– cos^2〗⁑π‘₯ ) 𝑑π‘₯=∫_1^0β–’γ€–sin⁑π‘₯/(1 + 𝑑^2 ) ((βˆ’π‘‘π‘‘)/sin⁑π‘₯ ) γ€— =βˆ’βˆ«_1^0▒𝑑𝑑/(1 + 𝑑^2 ) =βˆ’[tan^(βˆ’1)⁑𝑑 ]_1^0 =βˆ’[tan^(βˆ’1)⁑〖(0)βˆ’tan^(βˆ’1)⁑(1) γ€— ] =βˆ’[0βˆ’πœ‹/4] =βˆ’[βˆ’πœ‹/4] =𝝅/πŸ’

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo