Chapter 7 Class 12 Integrals
Concept wise

Slide22.JPG

Slide23.JPG

Go Ad-free

Transcript

Misc 40 Choose the correct answer If 𝑓(𝑎+𝑏−𝑥)=𝑓(𝑥), then ∫_𝑎^𝑏▒〖𝑥 𝑓(𝑥) 〗 𝑑𝑥 is equal to (A) (𝑎+𝑏)/2 ∫_𝑎^𝑏▒〖 𝑓(𝑏−𝑥) 〗 𝑑𝑥 (B) (𝑎+𝑏)/2 ∫_𝑎^𝑏▒〖 𝑓(𝑏+𝑥) 〗 𝑑𝑥 (C) (𝑏 −𝑎)/2 ∫_𝑎^𝑏▒〖 𝑓(𝑥) 〗 𝑑𝑥 (D) " " (𝑎+𝑏)/2 ∫_𝑎^𝑏▒〖 𝑓(𝑥) 〗 𝑑𝑥 Let I=∫_𝑎^𝑏▒〖𝑥 𝑓(𝑥) 〗 𝑑𝑥 ∴ I=∫_𝑎^𝑏▒〖(𝑎+𝑏−𝑥) 𝑓(𝑎+𝑏−𝑥) 〗 𝑑𝑥 I=∫_𝑎^𝑏▒〖(𝑎+𝑏−𝑥) 𝑓(𝑥) 〗 𝑑𝑥 I=∫_𝑎^𝑏▒〖(𝑎+𝑏) 𝑓(𝑥) 〗 𝑑𝑥−∫_𝑎^𝑏▒〖𝑥 𝑓(𝑥) 〗 𝑑𝑥 Adding (1) and (2) i.e (1) + (2) I+I=∫_𝑎^𝑏▒〖𝑥 𝑓(𝑥) 〗 𝑑𝑥+∫_𝑎^𝑏▒〖(𝑎+𝑏) 𝑓(𝑥) 〗 𝑑𝑥−∫_𝑎^𝑏▒〖𝑥 𝑓(𝑥) 〗 𝑑𝑥 2I=∫_𝑎^𝑏▒〖(𝑎+𝑏) 𝑓(𝑥) 〗 𝑑𝑥 2I=(𝑎+𝑏) ∫_𝑎^𝑏▒𝑓(𝑥) 𝑑𝑥 ∴ I=(𝑎 + 𝑏)/2 ∫_𝑎^𝑏▒𝑓(𝑥) 𝑑𝑥 ∴ Option D is correct .

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo