Misc 39 (MCQ) - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Integration using trigo identities - 2x formulae
Integration using trigo identities - 2x formulae
Last updated at April 16, 2024 by Teachoo
Misc 39 Choose the correct answer ∫▒cos2𝑥/((sin𝑥 + cos𝑥 )^2 ) 𝑑𝑥 is equal to (A) (−1)/(sin𝑥 + cos𝑥 )+𝐶 (B) log|sin𝑥+cos𝑥 |+𝐶 (C) log|sin𝑥−cos𝑥 |+𝐶 (D) " " 1/(sin𝑥 + cos𝑥 )^2 ∫1▒cos2𝑥/(cos𝑥 + sin𝑥 )^2 =∫1▒(cos^2𝑥 − sin^2𝑥)/(cos𝑥 + sin𝑥 )^2 𝑑𝑥 =∫1▒(cos𝑥 − sin𝑥 )(cos𝑥 + sin𝑥 )/(cos𝑥 + sin𝑥 )^2 𝑑𝑥 =∫1▒(cos𝑥 − sin𝑥)/(cos𝑥 + sin𝑥 ) 𝑑𝑥 Let cos𝑥+sin𝑥=𝑡 Diff w.r.t. x −sin𝑥+cos𝑥=𝑑𝑡/𝑑𝑥 𝑑𝑥=1/((cos𝑥 − sin𝑥 ) ) 𝑑𝑡 Hence, our equation becomes =∫1▒((cos𝑥 − sin𝑥 ))/𝑑𝑡 ×𝑑𝑡/(cos𝑥 − sin𝑥 ) =∫1▒1/𝑡 𝑑𝑡 =log𝑡+𝐶 Putting value of 𝑡=𝑐𝑜𝑠𝑥+𝑠𝑖𝑛𝑥 =log|cos𝑥+sin𝑥 |+𝐶 Hence correct answer is B.