Misc 37 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Definite Integration - By Formulae
Example 27 (i)
Ex 7.8, 3
Ex 7.8, 6
Ex 7.8, 2
Misc 28
Ex 7.8, 4 Important
Ex 7.8, 5
Ex 7.8, 7
Ex 7.8, 8 Important
Ex 7.8, 17 Important
Ex 7.8, 12
Ex 7.8, 18
Misc 35
Misc 36 Important
Ex 7.9, 2 Important
Ex 7.8, 20 Important
Ex 7.8, 9
Ex 7.8, 10
Ex 7.8, 21 (MCQ) Important
Ex 7.8, 22 (MCQ)
Ex 7.8, 14 Important
Ex 7.8, 19 Important
Ex 7.9, 10 (MCQ) Important
Ex 7.9, 8
Misc 33
Misc 37 You are here
Ex 7.9, 3 Important
Definite Integration - By Formulae
Last updated at Dec. 16, 2024 by Teachoo
Misc 37 Prove that β«_0^1βsin^(β1)β‘π₯ ππ₯=π/2β1 Solving L.H.S β«_0^1βγγπ ππγ^(β1) (π₯) ππ₯γ Let I = β«1βγπ ππγ^(β1) (π₯) ππ₯ Let x = sin π dx = cosπ dπ Substituting in I I = β«1βγγπ ππγ^(β1) (sinβ‘γπ) cosβ‘γπ ππγ γ γ = β«1βγπ cosβ‘γπ ππγ γ = π β«1βcosβ‘γπ ππββ«1β((π (π))/ππ β«1βcosβ‘γπ ππγ ) ππγ = π (sin π) β β«1βγ(1) sinβ‘γπ ππγ γ = π sin π β β«1βsinβ‘γπ ππγ = π sin π β (βcos π) = π sin π + cos π Putting value of π Hence I = π sin π + cos π I = γπ ππγ^(β1) (π₯)Γπ₯+β(1βπ₯^2 ) = π₯ γπ ππγ^(β1) (π₯)+ β(1βπ₯^2 ) Thus, β«1βγγπ ππγ^(β1) (π₯) ππ₯=πΉ(π₯)=π₯γπ ππγ^(β1) (π₯)+β(1βπ₯^2 )γ Now, β«1_0^1βγγπ ππγ^(β1) (π₯) ππ₯=πΉ(1)βπΉ(0)γ = (1) γπ ππγ^(β1) (1)+β(1β1)β(0γ π ππγ^(β1) (0)+β(1β0) ) =π/2β(1) =π /πβπ = R.H.S Hence, Proved.