Slide8.JPG

Slide9.JPG
Slide10.JPG

Go Ad-free

Transcript

Misc 35 Prove that ∫_0^(πœ‹/2)β–’sin^3⁑π‘₯ 𝑑π‘₯=2/3 Solving L.H.S ∫_0^(πœ‹/2)β–’sin^3⁑π‘₯ 𝑑π‘₯ = ∫_0^(πœ‹/2)β–’γ€– γ€–sin π‘₯ (sinγ€—^2⁑〖π‘₯)γ€— γ€— 𝑑π‘₯ = ∫_0^(πœ‹/2)▒𝑠𝑖𝑛⁑〖π‘₯ (1βˆ’γ€–π‘π‘œπ‘ γ€—^2 π‘₯)γ€— 𝑑π‘₯ = ∫_0^(πœ‹/2)▒𝑠𝑖𝑛⁑〖π‘₯ 𝑑π‘₯βˆ’ ∫1_0^(πœ‹/2)β–’γ€–sin⁑〖π‘₯ γ€–π‘π‘œπ‘ γ€—^2 π‘₯γ€— 𝑑π‘₯γ€—γ€— 𝑰_𝟏 ∫1_0^(πœ‹/2)β–’sin⁑〖π‘₯ 𝑑π‘₯γ€— = βˆ’ [cos⁑π‘₯ ]_0^(πœ‹/2) = βˆ’[0βˆ’1] = 1 𝑰_𝟐 ∫1_0^(πœ‹/2)β–’sin⁑〖π‘₯ γ€–π‘π‘œπ‘ γ€—^2 π‘₯ 𝑑π‘₯γ€— Let t = cos x 𝑑𝑑/𝑑π‘₯ = - sin x dt = βˆ’ sin x dx Substituting, ∫1_0^1β–’sin⁑〖π‘₯×𝑑^2Γ—γ€— 𝑑𝑑/(βˆ’sin⁑〖π‘₯ γ€— ) = βˆ’βˆ«1_1^0▒〖𝑑^2 𝑑𝑑〗 = γ€–βˆ’[𝑑^3/3]γ€—_1^0 = βˆ’("0 βˆ’ " 1/3)=βˆ’((βˆ’1)/3) = 1/3 L.H.S = 𝐼_1βˆ’ 𝐼_2 = 1 βˆ’ 1/3 = 𝟐/πŸ‘ = R.H.S Hence, proved.

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo