Chapter 7 Class 12 Integrals
Concept wise

  Slide1.JPG

Slide2.JPG
Slide3.JPG

Go Ad-free

Transcript

Misc 32 Prove that โˆซ_1^3โ–’ใ€–๐‘‘๐‘ฅ/(๐‘ฅ^2 (๐‘ฅ + 1) )= 2/3ใ€—+logโกใ€–2/3ใ€— Solving L.H.S : โˆซ_1^3โ–’๐‘‘๐‘ฅ/(๐‘ฅ^2 (๐‘ฅ + 1) ) By partial fraction, 1/(๐‘ฅ^2 (๐‘ฅ + 1)) = A/๐‘ฅ+B/๐‘ฅ^2 +C/(๐‘ฅ + 1) 1/(๐‘ฅ^2 (๐‘ฅ + 1)) = ( A ๐‘ฅ (๐‘ฅ + 1) + B (๐‘ฅ + 1) + C๐‘ฅ^2)/(๐‘ฅ^2 (๐‘ฅ + 1)) โˆด 1 = Ax (x + 1) + B (x + 1) + C๐‘ฅ^2 Finding A,B,C โˆด 1/(๐‘ฅ^2 (๐‘ฅ + 1))= (โˆ’1)/๐‘ฅ+1/๐‘ฅ^2 +1/(๐‘ฅ + 1) โˆซ1โ–’1/(๐‘ฅ^2 (๐‘ฅ + 1)) ๐‘‘๐‘ฅ=โˆซ1โ–’(โˆ’1)/๐‘ฅ+1/๐‘ฅ^2 +1/(๐‘ฅ + 1) ๐‘‘๐‘ฅ = [โˆ’log|๐‘ฅ|โˆ’1/๐‘ฅ+log|๐‘ฅ+1|]_1^3 = [log|(๐‘ฅ + 1)/๐‘ฅ|โˆ’1/๐‘ฅ]_1^3 Putting the limits = [log(4/3)โˆ’1/3]โˆ’[log(2)โˆ’1] = "log" 4/3โˆ’"log" 2 โˆ’ 1/3+1 = "log" (4/3ร—1/2)โˆ’1/3+1 = ๐‘™๐‘œ๐‘”(2/3)+2/3 = R.H.S Hence, proved.

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo