Slide37.JPG

Slide38.JPG
Slide39.JPG
Slide40.JPG
Slide41.JPG Slide42.JPG Slide43.JPG

Go Ad-free

Transcript

Misc 31 Evaluate the definite integral ∫_1^4▒[|𝑥−1|+|𝑥−2|+|𝑥−3|] 𝑑𝑥 I=∫_1^4▒[|𝑥−1|+|𝑥−2|+|𝑥−3|] 𝑑𝑥 I=∫_1^4▒|𝑥−1| 𝑑𝑥+∫_1^4▒|𝑥−2| 𝑑𝑥+∫_1^4▒|𝑥−3| 𝑑𝑥 Solving 𝐈𝟏 I1=∫_1^4▒|𝑥−1| 𝑑𝑥 We kow that |𝑥−1|= {█( (𝑥−1) 𝑓𝑜𝑟 𝑥≥1@−(𝑥−1) 𝑓𝑜𝑟 𝑥<1)┤ Therefore, I1=∫_1^4▒|𝑥−1| 𝑑𝑥 I1=∫_1^4▒(𝑥−1) 𝑑𝑥 I1=∫_1^4▒𝑥 𝑑𝑥−∫_1^4▒1 𝑑𝑥 I1=[𝑥^2/2]_1^4−[𝑥]_1^4 I1=((4)^2 − (1)^2)/2 − [4−1] I1=(16 − 1)/2 − [3] I1=15/2 −3 I1=(15 − 6)/2 I1=9/2 Solving 𝐈𝟐 I2=∫_1^4▒|𝑥−2| 𝑑𝑥 We know that |𝑥−2|= {█( (𝑥−2) 𝑓𝑜𝑟 𝑥≥2@−(𝑥−2) 𝑓𝑜𝑟 𝑥<2)┤ Therefore I2=∫_1^4▒|𝑥−2| 𝑑𝑥 I2=∫_1^2▒〖−(𝑥−2) 〗 𝑑𝑥+∫_2^4▒(𝑥−2) 𝑑𝑥 I2=∫_1^2▒(−𝑥+2) 𝑑𝑥+∫_2^4▒(𝑥−2) 𝑑𝑥 I2=∫_1^2▒〖−𝑥〗 𝑑𝑥+∫_1^2▒2 𝑑𝑥+∫_2^4▒𝑥 𝑑𝑥−∫_2^4▒2 𝑑𝑥 I2=−[𝑥^2/2]_1^2+2[𝑥]_1^2+[𝑥^2/2]_2^4−2[𝑥]_2^4 I2=−[(4 − 1)/2]+2[2−1]+[(16 − 4)/2]−2[4−2] I2=−[3/2]+2[1]+12/2−2[2] I2= (− 3)/2 + 2+6−4 I2= (−3)/2 +8−4 I2= (−3)/2 +4 I2= (− 3 + 8)/2 I2= 5/2 Solving 𝐈𝟑 I3=∫_1^4▒|𝑥−3| 𝑑𝑥 We know |𝑥−3|= {█( (𝑥−3) 𝑓𝑜𝑟 𝑥≥3@−(𝑥−3) 𝑓𝑜𝑟 𝑥<3)┤ Therefore, I3=∫_1^4▒|𝑥−3| 𝑑𝑥 I3=∫_1^3▒〖−(𝑥−3) 〗 𝑑𝑥+∫_3^4▒(𝑥−3) 𝑑𝑥 I3=∫_1^3▒(−𝑥+3) 𝑑𝑥+∫_3^4▒(𝑥−3) 𝑑𝑥 I3=∫_1^3▒〖−𝑥〗 𝑑𝑥+∫_1^3▒3 𝑑𝑥+∫_3^4▒𝑥 𝑑𝑥−∫_3^4▒3 𝑑𝑥 I3=−[𝑥^2/2]_1^3+3[𝑥]_1^3+[𝑥^2/2]_3^4−3[𝑥]_3^4 I3=−[(9 − 1)/2]+3[3 −1]+[(16 − 9)/2]−3[4−3] I3=(− 8)/2 +3[2]+ 7/2 − 3[1] I3=−4 +6+ 7/2 − 3 I3=−7 +6+ 7/2 I3=−1+ 7/2 I3= (−2 + 7)/2 I3= 5/2 Putting the values of I1 , I2 , I3 in (1) I=9/2 + 5/2 + 5/2 I = 𝟏𝟗/𝟐

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo