Chapter 7 Class 12 Integrals
Concept wise

Misc 32 - Definite integral x tan x / sec x + tanx - Miscellaneous

Misc 32 - Chapter 7 Class 12 Integrals - Part 2
Misc 32 - Chapter 7 Class 12 Integrals - Part 3
Misc 32 - Chapter 7 Class 12 Integrals - Part 4
Misc 32 - Chapter 7 Class 12 Integrals - Part 5

Go Ad-free

Transcript

Question 2 Evaluate the definite integral ∫_0^πœ‹β–’(π‘₯ tan⁑π‘₯ )/(sec⁑π‘₯ +γ€– tan〗⁑π‘₯ ) 𝑑π‘₯ Let I=∫_0^πœ‹β–’(π‘₯ tan⁑π‘₯ )/(sec⁑π‘₯ +γ€– tan〗⁑π‘₯ ) 𝑑π‘₯ ∴ I=∫_0^πœ‹β–’((πœ‹ βˆ’ π‘₯) tan⁑〖 (πœ‹ βˆ’ π‘₯)γ€—)/(sec⁑(πœ‹ βˆ’ π‘₯) +γ€– tan〗⁑(πœ‹ βˆ’ π‘₯) ) 𝑑π‘₯ I=∫_0^πœ‹β–’((πœ‹ βˆ’ π‘₯)(βˆ’tan⁑〖 π‘₯γ€—) )/((βˆ’sec⁑〖 π‘₯γ€—) + γ€–( βˆ’tan〗⁑π‘₯)) 𝑑π‘₯ I=∫_0^πœ‹β–’(βˆ’(πœ‹ βˆ’ π‘₯) tan⁑π‘₯ )/(βˆ’(sec⁑π‘₯ +γ€– tan〗⁑π‘₯)) 𝑑π‘₯ Using The Property, P4 P4 : ∫_0^π‘Žβ–’γ€–π‘“(π‘₯)𝑑π‘₯=γ€— ∫_0^π‘Žβ–’π‘“(π‘Žβˆ’π‘₯)𝑑π‘₯ I=∫_0^πœ‹β–’((πœ‹ βˆ’ π‘₯) tan⁑π‘₯ )/((sec⁑π‘₯ +γ€– tan〗⁑π‘₯)) 𝑑π‘₯ Adding (1) and (2) i.e. (1) + (2) I+I=∫_0^πœ‹β–’(π‘₯ tan⁑π‘₯ )/(sec⁑π‘₯ +γ€– tan〗⁑π‘₯ ) 𝑑π‘₯+∫_0^πœ‹β–’(πœ‹ tan⁑π‘₯ βˆ’ π‘₯ tan⁑π‘₯)/(sec⁑π‘₯ +γ€– tan〗⁑π‘₯ ) 𝑑π‘₯ 2I=∫_0^πœ‹β–’(π‘₯ tan⁑π‘₯ + πœ‹ tan⁑π‘₯ βˆ’ π‘₯ tan⁑π‘₯)/(sec⁑π‘₯ +γ€– tan〗⁑π‘₯ ) 𝑑π‘₯ 2I=∫_0^πœ‹β–’(πœ‹ tan⁑π‘₯)/(sec⁑π‘₯ +γ€– tan〗⁑π‘₯ ) 𝑑π‘₯ 2I=πœ‹βˆ«_0^πœ‹β–’tan⁑π‘₯/(sec⁑π‘₯ +γ€– tan〗⁑π‘₯ ) 𝑑π‘₯ I=πœ‹/2 ∫_0^πœ‹β–’tan⁑π‘₯/(sec⁑π‘₯ +γ€– tan〗⁑π‘₯ ) 𝑑π‘₯ =πœ‹/2 ∫_0^πœ‹β–’(sin⁑π‘₯/cos⁑π‘₯ )/(1/cos⁑π‘₯ + sin⁑π‘₯/cos⁑π‘₯ ) 𝑑π‘₯ =πœ‹/2 ∫_0^πœ‹β–’sin⁑π‘₯/(1 + sin⁑π‘₯ ) 𝑑π‘₯ =πœ‹/2 ∫_0^πœ‹β–’(sin⁑π‘₯ + 1 βˆ’ 1)/(1 + sin⁑π‘₯ ) 𝑑π‘₯ =πœ‹/2 ∫_0^πœ‹β–’[(1 + sin⁑π‘₯)/(1 + sin⁑π‘₯ ) βˆ’1/(1 + sin⁑π‘₯ )] 𝑑π‘₯ =πœ‹/2 ∫_0^πœ‹β–’[1 βˆ’1/(1 + sin⁑π‘₯ )] 𝑑π‘₯ =πœ‹/2 [∫_0^πœ‹β–’1 𝑑π‘₯βˆ’βˆ«_0^πœ‹β–’1/(1 + sin⁑π‘₯ ) 𝑑π‘₯] =πœ‹/2 [[π‘₯]_0^πœ‹βˆ’βˆ«_0^πœ‹β–’1/(1 + sin⁑π‘₯ ) ((1 βˆ’ sin⁑π‘₯)/(1 βˆ’ sin⁑π‘₯ )) 𝑑π‘₯] =πœ‹/2 [[πœ‹βˆ’0]βˆ’βˆ«_0^πœ‹β–’(1 βˆ’ sin⁑π‘₯)/(1 βˆ’ sin^2⁑π‘₯ ) 𝑑π‘₯] =πœ‹/2 [πœ‹βˆ’βˆ«_0^πœ‹β–’(1 βˆ’ sin⁑π‘₯)/cos^2⁑π‘₯ 𝑑π‘₯] =πœ‹/2 [πœ‹βˆ’βˆ«_0^πœ‹β–’[1/cos^2⁑π‘₯ βˆ’ sin⁑π‘₯/cos^2⁑π‘₯ ] 𝑑π‘₯] =πœ‹/2 {πœ‹βˆ’βˆ«_0^πœ‹β–’[sec^2⁑π‘₯βˆ’tan⁑π‘₯ sec⁑π‘₯ ] 𝑑π‘₯} =πœ‹/2 {πœ‹βˆ’βˆ«_0^πœ‹β–’sec^2⁑π‘₯ 𝑑π‘₯+∫_0^πœ‹β–’γ€–tan⁑π‘₯ sec⁑π‘₯ γ€— 𝑑π‘₯} =πœ‹/2 [πœ‹βˆ’[tan⁑π‘₯ ]_0^πœ‹+[sec⁑π‘₯ ]_0^πœ‹ ] =πœ‹/2 {πœ‹βˆ’[tan⁑〖(πœ‹)βˆ’tan⁑(0) γ€— ]+[sec (πœ‹)βˆ’sec⁑(0) ]} =πœ‹/2 {πœ‹βˆ’[0βˆ’0]+[βˆ’1βˆ’1]} =πœ‹/2 {πœ‹βˆ’0+[βˆ’2]} =𝝅/𝟐 (π…βˆ’πŸ)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo