Slide32.JPG Slide33.JPG Slide34.JPG Slide35.JPG Slide36.JPG

You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.


Transcript

Misc 30 Evaluate the definite integral ∫_0^(πœ‹/2)β–’γ€–sin⁑2π‘₯ tan^(βˆ’1)⁑(sin⁑π‘₯ ) γ€— 𝑑π‘₯ ∫_0^(πœ‹/2)β–’γ€–sin⁑2π‘₯ tan^(βˆ’1)⁑(sin⁑π‘₯ ) γ€— 𝑑π‘₯ = ∫_0^(πœ‹/2)β–’γ€–2 sin⁑π‘₯ cos⁑π‘₯ tan^(βˆ’1)⁑(sin⁑π‘₯ ) γ€— 𝑑π‘₯ Let sin⁑π‘₯=𝑑 Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯ cos⁑π‘₯=𝑑𝑑/𝑑π‘₯ 𝑑π‘₯=𝑑𝑑/cos⁑π‘₯ Substituting x and dx ∫1_0^(πœ‹/2)β–’γ€–2 sin⁑〖π‘₯ cos⁑〖π‘₯ γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (sin⁑〖π‘₯) γ€— γ€— γ€— γ€— 𝑑π‘₯ = ∫1_0^1β–’γ€–2𝑑 cos⁑〖π‘₯ γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (𝑑) γ€— γ€— 𝑑𝑑/π‘π‘œπ‘ π‘₯ = ∫1_0^1β–’γ€–2𝑑 γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) 𝑑 γ€— 𝑑𝑑 = 2∫1_0^1▒〖𝑑 γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (𝑑) γ€— 𝑑𝑑 =2(γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘‘βˆ«1▒𝑑 𝑑𝑑 βˆ’ ∫1β–’γ€–((𝑑 (γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) ))/𝑑𝑑 ∫1▒〖𝑑 𝑑𝑑 γ€—) γ€— 𝑑𝑑) = 2(γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) 𝑑 (〖𝑑/2γ€—^2 )βˆ’βˆ«1β–’1/(1 + 𝑑^2 )×𝑑^2/2 𝑑𝑑) = 2(〖𝑑/2γ€—^2 γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘‘βˆ’1/2 ∫1▒𝑑^2/2 𝑑𝑑) = 𝑑^2 γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘‘βˆ’βˆ«1▒𝑑^2/(1 + 𝑑^2 ) 𝑑𝑑 Solving 𝑰_𝟏 I_1 = ∫1▒𝑑^2/(1 + 𝑑^2 ) 𝑑𝑑 Adding and Subtracting 1 in numerator. I_1 = ∫1β–’((𝑑^2 + 1 βˆ’ 1)/(𝑑^2 + 1))𝑑𝑑 I_1= ∫1β–’((𝑑^2 + 1)/(𝑑^2 + 1)βˆ’1/(𝑑^2 + 1))𝑑𝑑 I_1= ∫1β–’(1βˆ’1/(𝑑^2 + 1)) 𝑑𝑑 I_1= ∫1β–’γ€–π‘‘π‘‘βˆ’βˆ«1▒𝑑𝑑/(𝑑^2 + 1)γ€— I_1= t βˆ’ γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (t) Thus, our equation becomes ∴ ∫1β–’γ€–γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (𝑑)×𝑑 𝑑𝑑〗= 𝑑^2 γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) 𝑑 βˆ’I_1 = 𝑑^2 γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘‘βˆ’(π‘‘βˆ’γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) 𝑑) = 𝑑^2 γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘‘βˆ’π‘‘+γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) 𝑑 Now, 2∫1_0^1β–’γ€–γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (𝑑) 𝑑 𝑑𝑑〗 =[𝑑^2 γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) π‘‘βˆ’π‘‘+γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) 𝑑]_0^1 =(1^2Γ—γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) 1βˆ’1+γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) 1)βˆ’(0βˆ’0+γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (0)) =(πœ‹/4βˆ’ 1+πœ‹/4)βˆ’0 = 𝝅/πŸβˆ’πŸ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo