Slide27.JPG

Slide28.JPG
Slide29.JPG
Slide30.JPG
Slide31.JPG

Go Ad-free

Transcript

Misc 29 Evaluate the definite integral ∫_0^(πœ‹/4)β–’γ€–(sin⁑π‘₯ + cos⁑π‘₯)/(9 + 16 sin⁑2π‘₯ ) γ€— 𝑑π‘₯ ∫_0^(πœ‹/4)β–’γ€– (sin⁑π‘₯ + cos⁑π‘₯)/(9 +16 sin⁑2π‘₯ ) γ€— 𝑑π‘₯ Let sin⁑π‘₯βˆ’cos⁑π‘₯=𝑑 Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯ cos⁑π‘₯+sin⁑π‘₯=𝑑𝑑/𝑑π‘₯ 𝑑π‘₯=𝑑𝑑/(sin⁑π‘₯ + cos⁑π‘₯ ) Now, sin⁑π‘₯βˆ’cos⁑π‘₯=𝑑 Squaring both sides (sin⁑π‘₯βˆ’cos⁑π‘₯ )^2=𝑑^2 sin^2⁑π‘₯+cos^2⁑π‘₯βˆ’2 sin⁑π‘₯ cos⁑π‘₯=𝑑^2 1βˆ’2 sin⁑π‘₯ cos⁑π‘₯=𝑑^2 1βˆ’sin⁑2π‘₯=𝑑^2 1βˆ’π‘‘^2=sin⁑2π‘₯ Putting the values of dx and sin⁑2x, we get ∫_0^(πœ‹/4)β–’γ€– (sin⁑π‘₯ + cos⁑π‘₯)/(9 +16 sian⁑2π‘₯ ) γ€— 𝑑π‘₯=∫1_(βˆ’1)^0β–’γ€–(sin⁑π‘₯ + cos⁑π‘₯)/(9 +16 sin⁑2π‘₯ )×𝑑𝑑/(sin⁑π‘₯ + cos⁑π‘₯ )γ€— =∫_(βˆ’1)^0β–’γ€– 1/(9 +16 (1 βˆ’ 𝑑^2 ) ) γ€—. 𝑑𝑑 =∫_(βˆ’1)^0β–’γ€– 1/(9 +16 βˆ’ 16𝑑^2 ) γ€—. 𝑑𝑑 =∫_(βˆ’1)^0β–’γ€– 1/(25 βˆ’ 16𝑑^2 ) γ€—. 𝑑𝑑 =1/16 ∫_(βˆ’1)^0β–’γ€– 1/(25/16 βˆ’ 𝑑^2 ) γ€—. 𝑑𝑑 =1/16 ∫_(βˆ’1)^0β–’γ€– 1/((5/4)^2 βˆ’ 𝑑^2 ) γ€—. 𝑑𝑑 = γ€–1/16 [1/(2 . 5/4) γ€– log〗⁑〖 |( 5/4 + 𝑑)/( 5/4 βˆ’ 𝑑)|γ€— ]γ€—_(βˆ’1)^0 = γ€–1/4 [1/10 γ€– log〗⁑〖 |( 5 + 4𝑑)/( 5 βˆ’ 4𝑑)|γ€— ]γ€—_(βˆ’1)^0 = 1/40 γ€–log⁑〖 |( 5 + 4𝑑)/( 5 βˆ’ 4𝑑)|γ€—γ€—_(βˆ’1)^0 = 1/40 [log⁑|( 5 + 4(0))/( 5 βˆ’ 4(0) )|βˆ’log⁑|( 5 + 4(βˆ’1))/( 5 βˆ’ 4(βˆ’1) )| ] = 1/40 [log⁑|( 5 + 0)/( 5 βˆ’ 0)|βˆ’log⁑|( 5 βˆ’ 4)/( 5 + 4)| ] = 1/40 [log⁑〖5/5γ€—βˆ’log⁑〖1/9γ€— ] = 1/40 [γ€–log 〗⁑1βˆ’log⁑(1/9) ] = 1/40 (log⁑1+log⁑〖(1/9)^(βˆ’1) γ€— ) = 1/40 (0+log⁑〖9)γ€— = 𝟏/πŸ’πŸŽ π’π’π’ˆ πŸ—

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo