Misc 26 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11
Misc 12
Misc 13
Misc 14 Important
Misc 15
Misc 16
Misc 17
Misc 18 Important
Misc 19 Important
Misc 20
Misc 21
Misc 22
Misc 23 Important
Misc 24 Important
Misc 25 Important
Misc 26 Important You are here
Misc 27 Important
Misc 28
Misc 29 Important
Misc 30 Important
Misc 31 Important
Misc 32
Misc 33
Misc 34
Misc 35
Misc 36 Important
Misc 37
Misc 38 (MCQ) Important
Misc 39 (MCQ)
Misc 40 (MCQ)
Integration Formula Sheet Important
Question 1 Important
Question 2 Important
Question 3 Important
Question 4 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Misc 26 Evaluate the definite integral โซ_0^(๐/2)โใ(cos^2โก๐ฅ ๐๐ฅ)/(cos^2โก๐ฅ + 4 sin^2โก๐ฅ ) ใ Let I = โซ1_0^(๐/2)โ(ใ๐๐๐ ใ^2 ๐ฅ)/(ใ๐๐๐ ใ^2 ๐ฅ + 4ใ๐ ๐๐ใ^2 ๐ฅ) ๐๐ฅ = โซ1_0^(๐/2)โ(ใ๐๐๐ ใ^2 ๐ฅ)/(ใ๐๐๐ ใ^2 ๐ฅ + 4(ใ1 โ ๐๐๐ ใ^2 ๐ฅ) ๐๐ฅ) = โซ1_0^(๐/2)โ(ใ๐๐๐ ใ^2 ๐ฅ)/(4 โ 3 ใ๐๐๐ ใ^2 ๐ฅ) ๐๐ฅ = (โ1)/3 โซ1_0^(๐/4)โใ (โ3 ใ๐๐๐ ใ^2 ๐ฅ )/(4 โ 3 ใ๐๐๐ ใ^2 ๐ฅ) ใ ๐๐ฅ = (โ1)/3 โซ1_0^(๐/2)โ(ใโ 3 ๐๐๐ ใ^2 ๐ฅ + 4 โ 4)/(4 โ 3 ใ๐๐๐ ใ^2 ๐ฅ) ๐๐ฅ = (โ1)/3 โซ1_0^(๐/2)โ(ใ4 โ 3 ๐๐๐ ใ^2 ๐ฅ โ 4)/(4 โ 3 ใ๐๐๐ ใ^2 ๐ฅ) ๐๐ฅ = (โ1)/3 โซ1_0^(๐/2)โใ1โ4/(4 โ 3 ใ๐๐๐ ใ^2 ๐ฅ)ใ ๐๐ฅ Dividing numerator and denominator by ใ๐๐๐ ใ^2 ๐ฅ = (โ1)/3 (๐/2)+4/3 โซ1_0^(๐/2)โ(๐๐ฅ/(ใ๐๐๐ ใ^2 ๐ฅ))/((4 โ 3 ใ๐๐๐ ใ^2 ๐ฅ )/(ใ๐๐๐ ใ^2 ๐ฅ)) ๐๐ฅ = (โ1)/3 (๐/2)+4/3 โซ1_0^(๐/2)โ(ใ๐ ๐๐ใ^2 ๐ฅ)/(4 ใ๐ ๐๐ใ^2 ๐ฅ โ 3) ๐๐ฅ = (โ๐)/6+4/3 โซ1_0^(๐/2)โ(ใ๐ ๐๐ใ^2 ๐ฅ)/(4 (1 + ใ๐ก๐๐ใ^2 ๐ฅ) โ 3) ๐๐ฅ = (โ๐)/6+4/3 โซ1_0^(๐/2)โ(ใ๐ ๐๐ใ^2 ๐ฅ)/(4 + 4 ใ๐ก๐๐ใ^2 ๐ฅ โ 3) ๐๐ฅ = (โ๐)/6+4/3 โซ1_0^(๐/2)โ(ใ๐ ๐๐ใ^2 ๐ฅ)/( 4 ใ๐ก๐๐ใ^2 ๐ฅ + 1) ๐๐ฅ Let tan x = t Differentiating w.r.t x ใ๐ ๐๐ใ^2 x dx = dt Thus, When x = 0, t = 0, & when x = ๐/2, ๐ก= โ Substituting values and limit I = (โ๐)/6+4/3 โซ1_0^(๐/2)โ(ใ๐ ๐๐ใ^2 ๐ฅ)/( 4 ใ๐ก๐๐ใ^2 ๐ฅ + 1) ๐๐ฅ โด I =(โ๐)/6+4/3 โซ1_0^โโ๐๐ก/(ใ4๐กใ^2+1) = (โ๐)/6+4/3 โ1/4 โซ1_0^โโ๐๐ก/(ใ ๐กใ^2+1/4) =(โ๐)/6+4/3โ1/4 ร 1/((1/2) ) [ใ๐ก๐๐ใ^(โ1) ๐ก/(1/2)]_0^โ = (โ๐)/6+2/3โ [ใ๐ก๐๐ใ^(โ1) 2๐ก]_0^โ =(โ๐)/6+2/3โใ[๐ก๐๐ใ^(โ1) โโใ๐ก๐๐ใ^(โ1) 0] = โ๐/6+2/3โ[๐/2โ0] =โ๐/6+๐/3 =๐ /๐