Slide4.JPG

Slide5.JPG
Slide6.JPG
Slide7.JPG

Go Ad-free

Transcript

Misc 25 Evaluate the definite integral ∫_0^(πœ‹/4)β–’γ€–(sin⁑π‘₯ cos⁑π‘₯)/(cos^4⁑π‘₯ + sin^4⁑π‘₯ ) 𝑑π‘₯γ€— ∫_0^(πœ‹/4)β–’γ€–(sin⁑π‘₯ cos⁑π‘₯)/(cos^4⁑π‘₯ + sin^4⁑π‘₯ ) 𝑑π‘₯γ€— Adding and subtracting 2 〖𝑠𝑖𝑛〗^2 π‘₯ γ€–π‘π‘œπ‘ γ€—^2 π‘₯ from denominator = ∫_0^(πœ‹/4)β–’γ€–(sin⁑π‘₯ cos⁑π‘₯)/(cos^4⁑π‘₯ + sin^4⁑〖π‘₯ + 2〖𝑠𝑖𝑛〗^2 π‘₯ γ€–π‘π‘œπ‘ γ€—^2 π‘₯ βˆ’ 2〖𝑠𝑖𝑛〗^2 π‘₯ γ€–π‘π‘œπ‘ γ€—^2 π‘₯γ€— ) 𝑑π‘₯γ€— = ∫_0^(πœ‹/4)β–’γ€–(sin⁑π‘₯ cos⁑π‘₯)/(γ€–γ€–(cosγ€—^2⁑π‘₯ + sin^2⁑π‘₯)γ€—^2 βˆ’ 2〖𝑠𝑖𝑛〗^2 π‘₯ γ€–π‘π‘œπ‘ γ€—^2 π‘₯) 𝑑π‘₯γ€— = ∫_0^(πœ‹/4)β–’γ€–(sin⁑π‘₯ cos⁑π‘₯)/(1 βˆ’ (4 〖𝑠𝑖𝑛〗^2 π‘₯ γ€–π‘π‘œπ‘ γ€—^2 π‘₯)/2) 𝑑π‘₯γ€— = ∫_0^(πœ‹/4)β–’γ€–(sin⁑π‘₯ cos⁑π‘₯)/(1 βˆ’ 1/2 (2 sin⁑π‘₯ cos⁑π‘₯ )^2 ) 𝑑π‘₯γ€— = ∫_0^(πœ‹/4)β–’γ€–(sin⁑π‘₯ cos⁑π‘₯)/(1 βˆ’ (〖𝑠𝑖𝑛〗^2 2π‘₯)/2) 𝑑π‘₯γ€— = ∫_0^(πœ‹/4)β–’γ€–(2 sin⁑π‘₯ cos⁑π‘₯)/(2 βˆ’ 〖𝑠𝑖𝑛〗^(2 ) 2π‘₯) 𝑑π‘₯γ€— = ∫_0^(πœ‹/4)β–’γ€–sin⁑2π‘₯/(1 + (1 βˆ’ 〖𝑠𝑖𝑛〗^(2 ) 2π‘₯)) 𝑑π‘₯γ€— = ∫_0^(πœ‹/4)β–’γ€–sin⁑2π‘₯/(1 + γ€–π‘π‘œπ‘ γ€—^2 2π‘₯) γ€— 𝑑π‘₯ Let t = cos 2π‘₯ 𝑑𝑑/𝑑π‘₯=βˆ’2 sin⁑2π‘₯ (βˆ’π‘‘π‘‘)/2=sin⁑2π‘₯ 𝑑π‘₯ So, our equation becomes ∫_0^(πœ‹/4)β–’γ€–sin⁑2π‘₯/(1 + γ€–π‘π‘œπ‘ γ€—^2 2π‘₯) γ€— 𝑑π‘₯ = (βˆ’1)/2 ∫1_1^0▒𝑑𝑑/(1 + 𝑑^2 ) = (βˆ’1)/2 [γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (𝑑)]_1^0 = (βˆ’1)/2 [γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (0)βˆ’γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (1)] = (βˆ’1)/2 (0βˆ’πœ‹/4) = 𝝅/πŸ–

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo