Chapter 7 Class 12 Integrals
Concept wise

  Slide1.JPG

Slide2.JPG
Slide3.JPG

Go Ad-free

Transcript

Misc 24 Evaluate the definite integral ∫_(πœ‹/2)^πœ‹β–’γ€–e^π‘₯⁑((1 βˆ’sin⁑π‘₯)/(1 βˆ’cos⁑π‘₯ )) 𝑑π‘₯γ€— ∫_(πœ‹/2)^πœ‹β–’γ€–e^π‘₯⁑((1 βˆ’ sin⁑π‘₯)/(1 βˆ’γ€– cos〗⁑π‘₯ )) 𝑑π‘₯γ€— = ∫_(πœ‹/2)^πœ‹β–’γ€–e^π‘₯⁑((1 )/(1 βˆ’ cos⁑π‘₯ )βˆ’sin⁑π‘₯/(1 βˆ’ cos⁑π‘₯ )) 𝑑π‘₯γ€— = ∫_(πœ‹/2)^πœ‹β–’γ€–e^π‘₯⁑((βˆ’sin⁑π‘₯)/(1 βˆ’ cos⁑π‘₯ )+(1 )/(1 βˆ’ cos⁑π‘₯ )) 𝑑π‘₯γ€— Let f(x) = (βˆ’sin⁑π‘₯)/(1 βˆ’ cos⁑π‘₯ ) f’(x) = βˆ’[(cos⁑π‘₯ (1 βˆ’ cos⁑〖π‘₯) βˆ’ (sin⁑〖π‘₯) (sin⁑〖π‘₯)γ€— γ€— γ€—)/((1 βˆ’ γ€–cos⁑π‘₯)γ€—^2 )] =βˆ’[(cos⁑〖π‘₯ βˆ’γ€— γ€–π‘π‘œπ‘ γ€—^2 π‘₯ βˆ’ 〖𝑠𝑖𝑛〗^2 π‘₯)/((1 βˆ’ γ€–cos π‘₯⁑)γ€—^2 )] = βˆ’(cos⁑〖π‘₯ βˆ’ (γ€–π‘π‘œπ‘ γ€—^2 π‘₯ + 〖𝑠𝑖𝑛〗^2 π‘₯)γ€—/((1 βˆ’ γ€–π‘π‘œπ‘  π‘₯⁑)γ€—^2 )) = βˆ’ (cos⁑〖π‘₯ βˆ’ 1γ€—/γ€–(1 βˆ’γ€– cos〗⁑〖π‘₯)γ€—γ€—^2 ) = ( 1 βˆ’ cos⁑〖π‘₯ γ€—)/γ€–(1 βˆ’ cos⁑〖π‘₯)γ€—γ€—^2 = 1/(1 βˆ’ cos⁑π‘₯ ) Hence, the given integration is of form, ∫1▒〖𝑒^π‘₯ (𝑓(π‘₯)+𝑓^β€² (π‘₯)) 𝑑π‘₯γ€—= 𝑒^π‘₯ 𝑓(π‘₯) Where f(x) = (βˆ’sin⁑π‘₯)/(1 βˆ’ cos⁑π‘₯ ) and f’(x) = 1/(1 βˆ’ cos⁑π‘₯ ) Hence, ∫_(πœ‹/2)^πœ‹β–’γ€–e^π‘₯⁑((1 βˆ’ sin⁑π‘₯)/(1 βˆ’γ€– cos〗⁑π‘₯ )) 𝑑π‘₯γ€— = ∫_(πœ‹/2)^πœ‹β–’γ€–e^π‘₯⁑((1 )/(1 βˆ’ cos⁑π‘₯ )βˆ’sin⁑π‘₯/(1 βˆ’ cos⁑π‘₯ )) 𝑑π‘₯γ€— = [𝑒^π‘₯ ((βˆ’sin⁑π‘₯)/(1 βˆ’cos⁑π‘₯ ))]_(πœ‹/2)^πœ‹ = ((𝑒^π‘₯ sin⁑π‘₯)/cos⁑〖π‘₯ βˆ’1γ€— )_(πœ‹/2)^πœ‹ Putting limits = (𝑒^πœ‹ sinβ‘πœ‹)/cosβ‘γ€–πœ‹ βˆ’1γ€— βˆ’ (𝑒^(πœ‹/2) sinβ‘γ€–πœ‹/2γ€—)/cos⁑〖 πœ‹/2 βˆ’1γ€— = (𝑒^πœ‹ Γ— (0))/(βˆ’1 βˆ’1)βˆ’ (𝑒^(πœ‹/2) (1))/(0 βˆ’ 1) = 𝒆^(𝝅/𝟐)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo