Misc 23 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11
Misc 12
Misc 13
Misc 14 Important
Misc 15
Misc 16
Misc 17
Misc 18 Important
Misc 19 Important
Misc 20
Misc 21
Misc 22
Misc 23 Important You are here
Misc 24 Important
Misc 25 Important
Misc 26 Important
Misc 27 Important
Misc 28
Misc 29 Important
Misc 30 Important
Misc 31 Important
Misc 32
Misc 33
Misc 34
Misc 35
Misc 36 Important
Misc 37
Misc 38 (MCQ) Important
Misc 39 (MCQ)
Misc 40 (MCQ)
Integration Formula Sheet Important
Question 1 Important
Question 2 Important
Question 3 Important
Question 4 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Misc 23 Integrate the function (โ(๐ฅ^2 + 1) [logโกใ(๐ฅ^2+ 1) โ 2 logโก๐ฅ ใ ] )/๐ฅ^4 โซ1โ(โ(๐ฅ^2 + 1) [logโกใ(๐ฅ^2+ 1) โ 2 logโก๐ฅ ใ ] )/๐ฅ^4 ๐๐ฅ Taking ๐ฅ^2common from โ(๐ฅ^2+1) = โซ1โ(ใใ(๐ฅใ^2) ใ^(1/2) (1 + 1/๐ฅ^2 )^(1/2) (logโกใ(๐ฅ^2+1)ใ โ logโกใ๐ฅ^2 ใ ))/๐ฅ^4 ๐๐ฅ = โซ1โ(๐ฅ (1+ 1/๐ฅ^2 )^(1/2) (logโกใ ((๐ฅ^(2 )+ 1))/๐ฅ^2 ใ ))/๐ฅ^4 ๐๐ฅ = โซ1โ( (1+ 1/๐ฅ^2 )^(1/2) (logโก(1 + 1/๐ฅ^2 ) ))/๐ฅ^3 Let t = 1 + 1/๐ฅ^2 ๐๐ก/๐๐ฅ=(โ2)/๐ฅ^3 (โ1)/2 ๐๐ก=๐๐ฅ/๐ฅ^3 Substituting, = โ1/2 โซ1โ๐ก^(1/2) ใ log ๐กใโกใ ๐๐กใ = โซ1โ( (1+ 1/๐ฅ^2 )^(1/2) (logโก(1 + 1/๐ฅ^2 ) ))/๐ฅ^3 Let t = 1 + 1/๐ฅ^2 ๐๐ก/๐๐ฅ=(โ2)/๐ฅ^3 (โ1)/2 ๐๐ก=๐๐ฅ/๐ฅ^3 Substituting value of t and dt = (โ1)/2 โซ1โ๐ก^(1/2) ใ log ๐กใโกใ ๐๐กใ Hence, (โ1)/2 โซ1โใ๐ก^(1/2) logโกใ๐ก ๐๐ก=(โ1)/2 (logโกใ๐ก โซ1โใ๐ก^(1/2) ๐๐กใโโซ1โ((๐(logโกใ๐ก)ใ)/๐๐ก โซ1โ๐ก^(1/2) ๐๐ก) ๐๐กใ )ใ ใ = (โ1)/2 (logโกใ๐ก (๐ก^(3/2)/(3/2))โโซ1โใ1/๐กร(๐ก^(3/2)/(3/2)) ใใ ๐๐ก) = (โ1)/2 (2/3 ๐ก^(3/2) logโกใ๐กโ2/3ใ โซ1โใ๐ก^(1/2) ๐๐กใ) = (โ1)/2 (2/3 ๐ก^(3/2) logโกใ๐กโ2/3ใ ( ใ2๐กใ^(3/2))/3) = (โ1)/3 ๐ก^(3/2) logโก๐ก + 2/9 ๐ก^(3/2) Putting value of t = 1 + 1/๐ฅ^2 = (โ1)/3 (1+1/๐ฅ^2 )^(3/2) logโกใ(1+1/๐ฅ^2 )+2/9 " " (1+1/๐ฅ^2 )^(3/2)+ใ C = (โ๐)/๐ (๐+๐/๐^(๐ ) )^(๐/๐) (๐ฅ๐จ๐ โก(๐+๐/๐^๐ )โ๐/๐)+ C