Misc 23 - Chapter 7 Class 12 Integrals (Important Question)
Last updated at April 16, 2024 by Teachoo
Chapter 7 Class 12 Integrals
Ex 7.1, 18 Important
Ex 7.1, 20
Ex 7.2, 20 Important
Ex 7.2, 26 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.3, 6 Important
Ex 7.3, 13 Important
Ex 7.3, 18 Important
Ex 7.3, 22 Important
Ex 7.3, 24 (MCQ) Important
Example 9 (i)
Example 10 (i)
Ex 7.4, 8 Important
Ex 7.4, 15 Important
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 25 (MCQ) Important
Example 15 Important
Ex 7.5, 9 Important
Ex 7.5, 11 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 21 Important
Example 20 Important
Example 22 Important
Ex 7.6, 13 Important
Ex 7.6, 14 Important
Ex 7.6, 18 Important
Ex 7.6, 19
Ex 7.6, 24 (MCQ) Important
Ex 7.7, 5 Important
Ex 7.7, 10
Ex 7.7, 11 Important
Question 1 Important
Question 4 Important
Question 6 Important
Example 25 (i)
Ex 7.8, 15
Ex 7.8, 16 Important
Ex 7.8, 20 Important
Ex 7.8, 22 (MCQ)
Ex 7.9, 4
Ex 7.9, 7 Important
Ex 7.9, 8
Ex 7.9, 9 (MCQ) Important
Example 28 Important
Example 32 Important
Example 34 Important
Ex 7.10,8 Important
Ex 7.10, 18 Important
Example 38 Important
Example 39 Important
Example 42 Important
Misc 18 Important
Misc 8 Important
Question 1 Important
Misc 23 Important You are here
Misc 29 Important
Question 2 Important
Misc 38 (MCQ) Important
Question 4 (MCQ) Important
Integration Formula Sheet Important
Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Misc 23 Integrate the function (โ(๐ฅ^2 + 1) [logโกใ(๐ฅ^2+ 1) โ 2 logโก๐ฅ ใ ] )/๐ฅ^4 โซ1โ(โ(๐ฅ^2 + 1) [logโกใ(๐ฅ^2+ 1) โ 2 logโก๐ฅ ใ ] )/๐ฅ^4 ๐๐ฅ Taking ๐ฅ^2common from โ(๐ฅ^2+1) = โซ1โ(ใใ(๐ฅใ^2) ใ^(1/2) (1 + 1/๐ฅ^2 )^(1/2) (logโกใ(๐ฅ^2+1)ใ โ logโกใ๐ฅ^2 ใ ))/๐ฅ^4 ๐๐ฅ = โซ1โ(๐ฅ (1+ 1/๐ฅ^2 )^(1/2) (logโกใ ((๐ฅ^(2 )+ 1))/๐ฅ^2 ใ ))/๐ฅ^4 ๐๐ฅ = โซ1โ( (1+ 1/๐ฅ^2 )^(1/2) (logโก(1 + 1/๐ฅ^2 ) ))/๐ฅ^3 Let t = 1 + 1/๐ฅ^2 ๐๐ก/๐๐ฅ=(โ2)/๐ฅ^3 (โ1)/2 ๐๐ก=๐๐ฅ/๐ฅ^3 Substituting, = โ1/2 โซ1โ๐ก^(1/2) ใ log ๐กใโกใ ๐๐กใ = โซ1โ( (1+ 1/๐ฅ^2 )^(1/2) (logโก(1 + 1/๐ฅ^2 ) ))/๐ฅ^3 Let t = 1 + 1/๐ฅ^2 ๐๐ก/๐๐ฅ=(โ2)/๐ฅ^3 (โ1)/2 ๐๐ก=๐๐ฅ/๐ฅ^3 Substituting value of t and dt = (โ1)/2 โซ1โ๐ก^(1/2) ใ log ๐กใโกใ ๐๐กใ Hence, (โ1)/2 โซ1โใ๐ก^(1/2) logโกใ๐ก ๐๐ก=(โ1)/2 (logโกใ๐ก โซ1โใ๐ก^(1/2) ๐๐กใโโซ1โ((๐(logโกใ๐ก)ใ)/๐๐ก โซ1โ๐ก^(1/2) ๐๐ก) ๐๐กใ )ใ ใ = (โ1)/2 (logโกใ๐ก (๐ก^(3/2)/(3/2))โโซ1โใ1/๐กร(๐ก^(3/2)/(3/2)) ใใ ๐๐ก) = (โ1)/2 (2/3 ๐ก^(3/2) logโกใ๐กโ2/3ใ โซ1โใ๐ก^(1/2) ๐๐กใ) = (โ1)/2 (2/3 ๐ก^(3/2) logโกใ๐กโ2/3ใ ( ใ2๐กใ^(3/2))/3) = (โ1)/3 ๐ก^(3/2) logโก๐ก + 2/9 ๐ก^(3/2) Putting value of t = 1 + 1/๐ฅ^2 = (โ1)/3 (1+1/๐ฅ^2 )^(3/2) logโกใ(1+1/๐ฅ^2 )+2/9 " " (1+1/๐ฅ^2 )^(3/2)+ใ C = (โ๐)/๐ (๐+๐/๐^(๐ ) )^(๐/๐) (๐ฅ๐จ๐ โก(๐+๐/๐^๐ )โ๐/๐)+ C