Misc 19 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11
Misc 12
Misc 13
Misc 14 Important
Misc 15
Misc 16
Misc 17
Misc 18 Important
Misc 19 Important You are here
Misc 20
Misc 21
Misc 22
Misc 23 Important
Misc 24 Important
Misc 25 Important
Misc 26 Important
Misc 27 Important
Misc 28
Misc 29 Important
Misc 30 Important
Misc 31 Important
Misc 32
Misc 33
Misc 34
Misc 35
Misc 36 Important
Misc 37
Misc 38 (MCQ) Important
Misc 39 (MCQ)
Misc 40 (MCQ)
Integration Formula Sheet Important
Question 1 Important
Question 2 Important
Question 3 Important
Question 4 (MCQ) Important
Last updated at Dec. 16, 2024 by Teachoo
Misc 19 Integrate the function β((1 β βπ₯)/(1 + βπ₯)) β«1βγβ((1 β βπ₯)/(1 + βπ₯)) ππ₯γ Let x = γπππγ^π ππ½ dx = β4 cos 2π sin 2π dπ Substituting, = β«1ββ((1 β β((γπππ γ^2 2π) ))/(1 + β((γπππ γ^2 2π) )))Γβ4 cosβ‘2ΞΈ sinβ‘2ΞΈ ππ = β«1ββ((1 β cosβ‘2π)/(1 + πππ 2π))Γ(β4) cosβ‘2ΞΈ sinβ‘2ΞΈ ππ = β4β«1ββ((1 β (1 β 2γπ ππγ^(2 ) π))/(1 + (2γπππ γ^(2 ) π β 1) )) cosβ‘2ΞΈ (2 sinβ‘ΞΈ cosβ‘γπ)γ ππ = β8β«1ββ((2γπ ππγ^(2 ) π)/(2γπππ γ^(2 ) π)) cosβ‘2ΞΈ cosβ‘π sinβ‘π ππ = β8β«1βsinβ‘π/cosβ‘ΞΈ cosβ‘2ΞΈ cosβ‘π sinβ‘π ππ = β8β«1βγγπ ππγ^2 πγ cosβ‘2ΞΈ ππ = β8β«1β((1 β cosβ‘2ΞΈ)/2) cosβ‘2ΞΈ ππ = β4 β«1β(πππ 2ΞΈβcos^2β‘2ΞΈ ) ππ = 4 β«1β(γπππ γ^2 2ΞΈβcosβ‘2ΞΈ ) ππ = 4 β«1βγγπππ γ^2 2ΞΈγ ππβ4β«1βcosβ‘2ΞΈ ππ = 4 β«1β(cosβ‘4π + 1)/2 ππ β 4β«1βγπππ 2πγ ππ = 2 β«1βγ(cosβ‘4π + 1)γ ππ β 4β«1βγπππ 2πγ ππ = 2 [(sinβ‘4 π)/4+π] β4 [(sinβ‘2 π)/2]+C = sinβ‘4π/2+2π β2 π ππ 2π+ C Now x = γπππ γ^2 2π βπ₯ " = " cosβ‘2π γπππ γ^(β1) βπ₯=2π 1/2 γπππ γ^(β1) βπ₯=π And, sin 4π = 2 sin 2π cos 2π = 2β(1βπ₯)Γβπ₯ = 2 βπ₯ β(1βπ₯) Putting the values. = sinβ‘4π/2+2ΞΈβ2 sinβ‘2ΞΈ+ C = (2βπ₯ β(1 β π₯))/2+2 (γπππ γ^(β1) βπ₯)/2β2β(1βπ₯)+C = βπ₯ β(1βπ₯)+γπππ γ^(β1) βπ₯β2β(1βπ₯)+ C = β(π₯βπ₯^2 )+γπππ γ^(β1) βπ₯β2β(1βπ₯)+C = β2β(πβπ)+γπππγ^(βπ) βπ+β(πβπ^π )+π