Question 1 - Miscellaneous - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11
Misc 12
Misc 13
Misc 14 Important
Misc 15
Misc 16
Misc 17
Misc 18 Important
Misc 19 Important
Misc 20
Misc 21
Misc 22
Misc 23 Important
Misc 24 Important
Misc 25 Important
Misc 26 Important
Misc 27 Important
Misc 28
Misc 29 Important
Misc 30 Important
Misc 31 Important
Misc 32
Misc 33
Misc 34
Misc 35
Misc 36 Important
Misc 37
Misc 38 (MCQ) Important
Misc 39 (MCQ)
Misc 40 (MCQ)
Integration Formula Sheet Important
Question 1 Important You are here
Question 2 Important
Question 3 Important
Question 4 (MCQ) Important
Last updated at Dec. 16, 2024 by Teachoo
Question 1 Integrate the function (sin^(β1)β‘βπ₯ β cos^(β1)β‘βπ₯)/(sin^(β1)β‘βπ₯ + cos^(β1)β‘βπ₯ ) , π₯β[0, 1] Let πΌ = β«1β(sin^(β1)β‘βπ₯ β cos^(β1)β‘βπ₯)/(sin^(β1)β‘βπ₯ + cos^(β1)β‘βπ₯ ) ππ₯ We can write as (sin^(β1)β‘βπ₯ β cos^(β1)β‘βπ₯)/(sin^(β1)β‘βπ₯ + cos^(β1)β‘βπ₯ ) = (sin^(β1)β‘βπ₯ β (π/2 " β" γ π ππγ^(β1)β‘βπ₯ ))/(π/2) We know that γπ ππγ^(β1)β‘π₯+γπππ γ^(β1)β‘π₯=π/2 or γπππ γ^(β1)β‘π₯=π/2 βγ π ππγ^(β1)β‘π₯ = (2/π)(sin^(β1)β‘βπ₯ βπ/2 " +" γ π ππγ^(β1)β‘βπ₯ ) = 2/π (2 sin^(β1)β‘βπ₯ βπ/2) = 2/π Γ2 sin^(β1)β‘βπ₯β 2/πΓπ/2 = 4/π sin^(β1)β‘βπ₯β1 Integrating π€.π.π‘.π₯ β«1β(sin^(β1)β‘βπ₯ β cos^(β1)β‘βπ₯)/(sin^(β1)β‘βπ₯ + cos^(β1)β‘βπ₯ ) ππ₯=β«1β(4/π sin^(β1)β‘βπ₯β1) ππ₯ = β«1βγ4/π sin^(β1)β‘βπ₯ γ ππ₯ββ«1βππ₯ = 4/π β«1βsin^(β1)β‘βπ₯ ππ₯βπ₯+πΆ1 Let πΌ1=β«1βsin^(β1)β‘βπ₯ ππ₯ Hence, I = 4/π πΌ1βπ₯+πΆ1 Solving π_π πΌ1 = β«1βsin^(β1)β‘βπ₯ ππ₯ Put βπ₯=π‘ π₯=π‘^2 Differentiating π€.π.π‘.π₯ ππ₯/ππ₯ = (ππ‘^2)/ππ₯ 1 = 2π‘ ππ‘/ππ₯ ππ₯ = 2π‘ ππ‘ Therefore β«1βsin^(β1)β‘βπ₯ ππ₯=β«1βsin^(β1)β‘π‘ .2π‘ ππ‘ =2β«1βsin^(β1)β‘π‘ .π‘ ππ‘ =2β«1βγπ‘ sin^(β1)β‘γπ‘ γ γ ππ‘ =2[sin^(β1)β‘γπ‘ γ β«1βπ‘ ππ‘ββ«1β((π/ππ‘ sin^(β1)β‘π‘ ) β«1βγπ‘ ππ‘γ) ππ‘ Now we know that β«1βγπ(π₯) πβ‘(π₯) γ ππ₯=π(π₯) β«1βπ(π₯) ππ₯ββ«1β(π^β² (π₯) β«1βπ(π₯) ππ₯) ππ₯ Putting f(x) = t and g(x) = sinβ1 t =2[sin^(β1)β‘γπ‘ γ π‘^2/2 ββ«1β1/β(1 βγ π‘γ^2 ) Γπ‘^2/2 ππ‘+πΆ] =2Γπ‘^2/2 γ sin^(β1)γβ‘π‘β2Γβ«1βγ1/2 Γπ‘^2/β(1 βγ π‘γ^2 )γ ππ‘+πΆ = π‘^2 sin^(β1)β‘π‘ββ«1βπ‘^2/β(1 βγ π‘γ^2 ) ππ‘+πΆ = π‘^2 sin^(β1)β‘π‘+β«1β(βπ‘^2)/β(1 βγ π‘γ^2 ) ππ‘+πΆ Solving β«1βγβ πγ^π/β(π βγ πγ^π ) π π We can write (β π‘^2)/β(1 βγ π‘γ^2 ) =(γβ π‘γ^2 + 1 β 1)/β(1 βγ π‘γ^2 ) =(γ1 β π‘γ^2 β 1)/β(1 βγ π‘γ^2 ) =γ1 β π‘γ^2/β(1 βγ π‘γ^2 ) β" " 1/β(1 βγ π‘γ^2 ) =β(1 βγ π‘γ^2 ) β" " 1/β(1 βγ π‘γ^2 ) Integrating π€.π.π‘.π₯ β«1β(β π‘^2)/(1 βγ π‘γ^2 ) dt = β«1βγ(β(1 βγ π‘γ^2 ) β" " 1/β(1 βγ π‘γ^2 )) γ ππ‘ = β«1ββ(1^2 βγ π‘γ^2 ) ππ‘ββ«1β1/β(1^2 βγ π‘γ^2 ) ππ‘ = π‘/2 β(1^2 βγ π‘γ^2 )+1^2/2 sin^(β1)β‘γπ‘/1γβsin^(β1)β‘γπ‘/1γ We know that β«1ββ(π^2βπ₯^2 )=π₯/2 β(π^2βπ₯^2 )+π^2/2 sin^(β1)β‘γπ₯/πγ+πΆ β«1β1/β(π^2 β π₯^2 )=sin^(β1)β‘γπ₯/πγ+πΆ = π‘/2 β(1 βγ π‘γ^2 )+1/2 sin^(β1)β‘π‘βsin^(β1)β‘π‘ = π‘/2 β(1 βγ π‘γ^2 ) β 1/2 sin^(β1)β‘π‘ Hence we can write πΌ1 = π‘^2 sin^(β1)β‘π‘+β«1β(β π‘^2)/β(1 βγ π‘γ^2 ) ππ‘ πΌ1 = π‘^2 sinβ‘π‘+π‘/2 β(1 βγ π‘γ^2 )β1/2 sin^(β1)β‘π‘ Putting π‘ = βπ₯ πΌ1 = (βπ₯)^2 sinβ‘βπ₯+βπ₯/2 β(1 βγ (βπ₯)γ^2 )β1/2 sin^(β1)β‘βπ₯ πΌ1 = π₯ sinβ‘βπ₯+βπ₯/2 β(1βπ₯)β1/2 sin^(β1)β‘βπ₯ Hence πΌ = 4/π γ πΌγ_(1 )βπ₯+C_1 πΌ = 4/π (π₯ γπ ππγ^(β1) βπ₯+βπ₯/2 β(1βπ₯)β1/2 γπ ππγ^(β1) βπ₯)βπ₯+C_1 πΌ = 4/π (π₯ γπ ππγ^(β1) βπ₯+β(π₯ β π₯^2 )/2 β1/2 γπ ππγ^(β1) βπ₯)βπ₯+C_1 πΌ = 4/π π₯ γπ ππγ^(β1) βπ₯+2/π β(π₯ β π₯^2 )β2/π γπ ππγ^(β1) βπ₯βπ₯+C_1 πΌ = 4/π π₯ γπ ππγ^(β1) βπ₯β2/π γπ ππγ^(β1) βπ₯+2/π β(π₯ β π₯^2 )βπ₯+C_1 πΌ = γπ ππγ^(β1) βπ₯ [4π₯/πβ2/π]+(2 β(π₯ β π₯^2 ))/πβπ₯+ C_1 πΌ = γπ ππγ^(β1) βπ₯ [(4π₯ β 2)/π]+(2 β(π₯ β π₯^2 ))/πβπ₯+ C_1 π° = γπππγ^(βπ) βπ [(π(ππ βπ))/π ]+(π β(π β π^π ))/π βπ+ πͺ_π