Question 1 - Chapter 7 Class 12 Integrals (Important Question)
Last updated at Dec. 16, 2024 by Teachoo
Chapter 7 Class 12 Integrals
Ex 7.1, 18 Important
Ex 7.1, 20
Ex 7.2, 20 Important
Ex 7.2, 26 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.3, 6 Important
Ex 7.3, 13 Important
Ex 7.3, 18 Important
Ex 7.3, 22 Important
Ex 7.3, 24 (MCQ) Important
Example 9 (i)
Example 10 (i)
Ex 7.4, 8 Important
Ex 7.4, 15 Important
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 25 (MCQ) Important
Example 15 Important
Ex 7.5, 9 Important
Ex 7.5, 11 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 21 Important
Example 20 Important
Example 22 Important
Ex 7.6, 13 Important
Ex 7.6, 14 Important
Ex 7.6, 18 Important
Ex 7.6, 19
Ex 7.6, 24 (MCQ) Important
Ex 7.7, 5 Important
Ex 7.7, 10
Ex 7.7, 11 Important
Question 1 Important You are here
Question 4 Important
Question 6 Important
Example 25 (i)
Ex 7.8, 15
Ex 7.8, 16 Important
Ex 7.8, 20 Important
Ex 7.8, 22 (MCQ)
Ex 7.9, 4
Ex 7.9, 7 Important
Ex 7.9, 8
Ex 7.9, 9 (MCQ) Important
Example 28 Important
Example 32 Important
Example 34 Important
Ex 7.10,8 Important
Ex 7.10, 18 Important
Example 38 Important
Example 39 Important
Example 42 Important
Misc 18 Important
Misc 8 Important
Question 1 Important You are here
Misc 23 Important
Misc 29 Important
Question 2 Important
Misc 38 (MCQ) Important
Question 4 (MCQ) Important
Integration Formula Sheet Important
Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Question 1 Integrate the function (sin^(β1)β‘βπ₯ β cos^(β1)β‘βπ₯)/(sin^(β1)β‘βπ₯ + cos^(β1)β‘βπ₯ ) , π₯β[0, 1] Let πΌ = β«1β(sin^(β1)β‘βπ₯ β cos^(β1)β‘βπ₯)/(sin^(β1)β‘βπ₯ + cos^(β1)β‘βπ₯ ) ππ₯ We can write as (sin^(β1)β‘βπ₯ β cos^(β1)β‘βπ₯)/(sin^(β1)β‘βπ₯ + cos^(β1)β‘βπ₯ ) = (sin^(β1)β‘βπ₯ β (π/2 " β" γ π ππγ^(β1)β‘βπ₯ ))/(π/2) We know that γπ ππγ^(β1)β‘π₯+γπππ γ^(β1)β‘π₯=π/2 or γπππ γ^(β1)β‘π₯=π/2 βγ π ππγ^(β1)β‘π₯ = (2/π)(sin^(β1)β‘βπ₯ βπ/2 " +" γ π ππγ^(β1)β‘βπ₯ ) = 2/π (2 sin^(β1)β‘βπ₯ βπ/2) = 2/π Γ2 sin^(β1)β‘βπ₯β 2/πΓπ/2 = 4/π sin^(β1)β‘βπ₯β1 Integrating π€.π.π‘.π₯ β«1β(sin^(β1)β‘βπ₯ β cos^(β1)β‘βπ₯)/(sin^(β1)β‘βπ₯ + cos^(β1)β‘βπ₯ ) ππ₯=β«1β(4/π sin^(β1)β‘βπ₯β1) ππ₯ = β«1βγ4/π sin^(β1)β‘βπ₯ γ ππ₯ββ«1βππ₯ = 4/π β«1βsin^(β1)β‘βπ₯ ππ₯βπ₯+πΆ1 Let πΌ1=β«1βsin^(β1)β‘βπ₯ ππ₯ Hence, I = 4/π πΌ1βπ₯+πΆ1 Solving π_π πΌ1 = β«1βsin^(β1)β‘βπ₯ ππ₯ Put βπ₯=π‘ π₯=π‘^2 Differentiating π€.π.π‘.π₯ ππ₯/ππ₯ = (ππ‘^2)/ππ₯ 1 = 2π‘ ππ‘/ππ₯ ππ₯ = 2π‘ ππ‘ Therefore β«1βsin^(β1)β‘βπ₯ ππ₯=β«1βsin^(β1)β‘π‘ .2π‘ ππ‘ =2β«1βsin^(β1)β‘π‘ .π‘ ππ‘ =2β«1βγπ‘ sin^(β1)β‘γπ‘ γ γ ππ‘ =2[sin^(β1)β‘γπ‘ γ β«1βπ‘ ππ‘ββ«1β((π/ππ‘ sin^(β1)β‘π‘ ) β«1βγπ‘ ππ‘γ) ππ‘ Now we know that β«1βγπ(π₯) πβ‘(π₯) γ ππ₯=π(π₯) β«1βπ(π₯) ππ₯ββ«1β(π^β² (π₯) β«1βπ(π₯) ππ₯) ππ₯ Putting f(x) = t and g(x) = sinβ1 t =2[sin^(β1)β‘γπ‘ γ π‘^2/2 ββ«1β1/β(1 βγ π‘γ^2 ) Γπ‘^2/2 ππ‘+πΆ] =2Γπ‘^2/2 γ sin^(β1)γβ‘π‘β2Γβ«1βγ1/2 Γπ‘^2/β(1 βγ π‘γ^2 )γ ππ‘+πΆ = π‘^2 sin^(β1)β‘π‘ββ«1βπ‘^2/β(1 βγ π‘γ^2 ) ππ‘+πΆ = π‘^2 sin^(β1)β‘π‘+β«1β(βπ‘^2)/β(1 βγ π‘γ^2 ) ππ‘+πΆ Solving β«1βγβ πγ^π/β(π βγ πγ^π ) π π We can write (β π‘^2)/β(1 βγ π‘γ^2 ) =(γβ π‘γ^2 + 1 β 1)/β(1 βγ π‘γ^2 ) =(γ1 β π‘γ^2 β 1)/β(1 βγ π‘γ^2 ) =γ1 β π‘γ^2/β(1 βγ π‘γ^2 ) β" " 1/β(1 βγ π‘γ^2 ) =β(1 βγ π‘γ^2 ) β" " 1/β(1 βγ π‘γ^2 ) Integrating π€.π.π‘.π₯ β«1β(β π‘^2)/(1 βγ π‘γ^2 ) dt = β«1βγ(β(1 βγ π‘γ^2 ) β" " 1/β(1 βγ π‘γ^2 )) γ ππ‘ = β«1ββ(1^2 βγ π‘γ^2 ) ππ‘ββ«1β1/β(1^2 βγ π‘γ^2 ) ππ‘ = π‘/2 β(1^2 βγ π‘γ^2 )+1^2/2 sin^(β1)β‘γπ‘/1γβsin^(β1)β‘γπ‘/1γ We know that β«1ββ(π^2βπ₯^2 )=π₯/2 β(π^2βπ₯^2 )+π^2/2 sin^(β1)β‘γπ₯/πγ+πΆ β«1β1/β(π^2 β π₯^2 )=sin^(β1)β‘γπ₯/πγ+πΆ = π‘/2 β(1 βγ π‘γ^2 )+1/2 sin^(β1)β‘π‘βsin^(β1)β‘π‘ = π‘/2 β(1 βγ π‘γ^2 ) β 1/2 sin^(β1)β‘π‘ Hence we can write πΌ1 = π‘^2 sin^(β1)β‘π‘+β«1β(β π‘^2)/β(1 βγ π‘γ^2 ) ππ‘ πΌ1 = π‘^2 sinβ‘π‘+π‘/2 β(1 βγ π‘γ^2 )β1/2 sin^(β1)β‘π‘ Putting π‘ = βπ₯ πΌ1 = (βπ₯)^2 sinβ‘βπ₯+βπ₯/2 β(1 βγ (βπ₯)γ^2 )β1/2 sin^(β1)β‘βπ₯ πΌ1 = π₯ sinβ‘βπ₯+βπ₯/2 β(1βπ₯)β1/2 sin^(β1)β‘βπ₯ Hence πΌ = 4/π γ πΌγ_(1 )βπ₯+C_1 πΌ = 4/π (π₯ γπ ππγ^(β1) βπ₯+βπ₯/2 β(1βπ₯)β1/2 γπ ππγ^(β1) βπ₯)βπ₯+C_1 πΌ = 4/π (π₯ γπ ππγ^(β1) βπ₯+β(π₯ β π₯^2 )/2 β1/2 γπ ππγ^(β1) βπ₯)βπ₯+C_1 πΌ = 4/π π₯ γπ ππγ^(β1) βπ₯+2/π β(π₯ β π₯^2 )β2/π γπ ππγ^(β1) βπ₯βπ₯+C_1 πΌ = 4/π π₯ γπ ππγ^(β1) βπ₯β2/π γπ ππγ^(β1) βπ₯+2/π β(π₯ β π₯^2 )βπ₯+C_1 πΌ = γπ ππγ^(β1) βπ₯ [4π₯/πβ2/π]+(2 β(π₯ β π₯^2 ))/πβπ₯+ C_1 πΌ = γπ ππγ^(β1) βπ₯ [(4π₯ β 2)/π]+(2 β(π₯ β π₯^2 ))/πβπ₯+ C_1 π° = γπππγ^(βπ) βπ [(π(ππ βπ))/π ]+(π β(π β π^π ))/π βπ+ πͺ_π