Misc 18 - Chapter 7 Class 12 Integrals (Important Question)
Last updated at April 16, 2024 by Teachoo
Chapter 7 Class 12 Integrals
Ex 7.1, 18 Important
Ex 7.1, 20
Ex 7.2, 20 Important
Ex 7.2, 26 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.3, 6 Important
Ex 7.3, 13 Important
Ex 7.3, 18 Important
Ex 7.3, 22 Important
Ex 7.3, 24 (MCQ) Important
Example 9 (i)
Example 10 (i)
Ex 7.4, 8 Important
Ex 7.4, 15 Important
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 25 (MCQ) Important
Example 15 Important
Ex 7.5, 9 Important
Ex 7.5, 11 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 21 Important
Example 20 Important
Example 22 Important
Ex 7.6, 13 Important
Ex 7.6, 14 Important
Ex 7.6, 18 Important
Ex 7.6, 19
Ex 7.6, 24 (MCQ) Important
Ex 7.7, 5 Important
Ex 7.7, 10
Ex 7.7, 11 Important
Question 1 Important
Question 4 Important
Question 6 Important
Example 25 (i)
Ex 7.8, 15
Ex 7.8, 16 Important
Ex 7.8, 20 Important
Ex 7.8, 22 (MCQ)
Ex 7.9, 4
Ex 7.9, 7 Important
Ex 7.9, 8
Ex 7.9, 9 (MCQ) Important
Example 28 Important
Example 32 Important
Example 34 Important
Ex 7.10,8 Important
Ex 7.10, 18 Important
Example 38 Important
Example 39 Important
Example 42 Important
Misc 18 Important You are here
Misc 8 Important
Question 1 Important
Misc 23 Important
Misc 29 Important
Question 2 Important
Misc 38 (MCQ) Important
Question 4 (MCQ) Important
Integration Formula Sheet Important
Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Misc 18 Integrate the function 1/β(sin^3β‘π₯ sinβ‘(π₯ + πΌ) ) Solving sin^3β‘π₯ sinβ‘(π₯ + πΌ) =sin^3β‘π₯ [sinβ‘π₯ cosβ‘πΌ+cosβ‘π₯.sinβ‘πΌ ] =γsin^4 π₯γβ‘cosβ‘πΌ +cosβ‘π₯.sin^3β‘π₯ sinβ‘πΌ =γsin^4 π₯γβ‘cosβ‘πΌ +cosβ‘π₯.sin^3β‘π₯ sinβ‘πΌΓsinβ‘π₯/sinβ‘π₯ =sin^4β‘π₯ [cosβ‘πΌ+cosβ‘π₯ . sinβ‘πΌ.1/sinβ‘π₯ ] Hence Using π ππβ‘(π΄+π΅)=π ππβ‘π΄ πππ β‘π΅+πππ β‘π΄.π ππβ‘π΅ =sin^4β‘π₯ [cosβ‘πΌ+cosβ‘π₯/sinβ‘π₯ . sinβ‘πΌ ] =sin^4β‘π₯ [cosβ‘πΌ+cotβ‘π₯ sinβ‘πΌ ] Therefore sin^3β‘π₯ sinβ‘(π₯+πΌ)=sin^4β‘π₯ (cosβ‘πΌ+cotβ‘π₯.sinβ‘πΌ ) Now β«1β1/β(sin^3β‘π₯ sinβ‘(π₯ + πΌ) ) ππ₯ =β«1β1/β(sin^4β‘π₯ (cosβ‘πΌ + cotβ‘π₯ . sinβ‘πΌ ) ) ππ₯ =β«1βγ1/β(sin^4β‘π₯ )Γ1/β(cosβ‘πΌ + cotβ‘π₯ . sinβ‘πΌ )γ ππ₯ =β«1βγ1/sin^2β‘π₯ Γ1/β(cosβ‘πΌ + cotβ‘π₯ . sinβ‘πΌ )γ ππ₯ Let cosβ‘πΌ+cotβ‘π₯. sinβ‘πΌ=π‘ Diff w.r.t. x π(cosβ‘πΌ + cotβ‘π₯ sinβ‘πΌ )/ππ₯=ππ‘/ππ₯ π(cosβ‘πΌ )/ππ₯+sinβ‘πΌ π(cotβ‘π₯ )/ππ₯=ππ‘/ππ₯ =β«1βγ1/β(sin^4β‘π₯ )Γ1/β(cosβ‘πΌ + cotβ‘π₯ . sinβ‘πΌ )γ ππ₯ =β«1βγ1/sin^2β‘π₯ Γ1/β(cosβ‘πΌ + cotβ‘π₯ . sinβ‘πΌ )γ ππ₯ Let cosβ‘πΌ+cotβ‘π₯. sinβ‘πΌ=π‘ Diff w.r.t. x π(cosβ‘πΌ + cotβ‘π₯ sinβ‘πΌ )/ππ₯=ππ‘/ππ₯ π(cosβ‘πΌ )/ππ₯+sinβ‘πΌ π(cotβ‘π₯ )/ππ₯=ππ‘/ππ₯ 0+sinβ‘πΌ (βπππ ππ^2 π₯)=ππ‘/ππ₯ βsinβ‘πΌ πππ ππ^2 π₯=ππ‘/ππ₯ ππ₯=ππ‘/(βsinβ‘πΌ πππ ππ^2 π₯) ππ₯=1/(βsinβ‘πΌ ) . 1/(πππ ππ^2 π₯) . ππ‘ ππ₯=1/(βsinβ‘πΌ ) . sin^2β‘π₯. ππ‘ Now our equation becomes β«1β1/(sin^2β‘π₯ β(cosβ‘πΌ + cotβ‘π₯ sinβ‘πΌ ) ) ππ₯ =β«1β1/(sin^2β‘π₯ βπ‘ )Γ1/(βsinβ‘πΌ )Γsin^2β‘π₯ ππ‘ cosβ‘πΌ &sinβ‘πΌ "are constant" β(" " @"&" π(cotβ‘π₯ )/ππ₯=βπππ ππ π₯) =1/(βsinβ‘πΌ ) β«1β1/βπ‘ ππ‘ =(β1)/sinβ‘πΌ β«1β(π‘)^((β1)/2) ππ‘ =(β1)/sinβ‘πΌ [π‘^((β1)/2 + 1)/((β1)/2 + 1) +πΆ] =(β1)/sinβ‘πΌ [π‘^(1/2)/(1/2) +πΆ] =(βπ)/πππβ‘πΆ [πβπ +πͺ] Putting back value of π‘=β(πππ β‘πΌ+πππ‘β‘π₯. π ππβ‘πΌ ) =(β1)/sinβ‘πΌ [2β(πππ β‘πΌ+πππ‘β‘π₯. π ππβ‘πΌ )+πΆ] =(β2)/sinβ‘πΌ β(πππ β‘πΌ+πππ‘β‘π₯. π ππβ‘πΌ ) β1/sinβ‘πΌ . πΆ =(β2)/sinβ‘πΌ β(πππ β‘πΌ+πππ‘β‘π₯. π ππβ‘πΌ ) +πΆ Now, From (1) sin^3β‘π₯ sinβ‘(π₯+πΌ)=sin^4β‘π₯ (πππ β‘πΌ+πππ‘β‘π₯. π ππβ‘πΌ ) (sin^3β‘π₯ sinβ‘(π₯ + πΌ))/sin^4β‘π₯ =πππ β‘πΌ+πππ‘β‘π₯. π ππβ‘πΌ γπ ππ γβ‘(π₯ + πΌ)/sinβ‘π₯ =πππ β‘πΌ+πππ‘β‘π₯. π ππβ‘πΌ Thus, Answer =(βπ)/πππβ‘π β(πππβ‘(π + πΆ)/π¬π’π§β‘π ) + πͺ