Misc 11 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11 You are here
Misc 12
Misc 13
Misc 14 Important
Misc 15
Misc 16
Misc 17
Misc 18 Important
Misc 19 Important
Misc 20
Misc 21
Misc 22
Misc 23 Important
Misc 24 Important
Misc 25 Important
Misc 26 Important
Misc 27 Important
Misc 28
Misc 29 Important
Misc 30 Important
Misc 31 Important
Misc 32
Misc 33
Misc 34
Misc 35
Misc 36 Important
Misc 37
Misc 38 (MCQ) Important
Misc 39 (MCQ)
Misc 40 (MCQ)
Integration Formula Sheet Important
Question 1 Important
Question 2 Important
Question 3 Important
Question 4 (MCQ) Important
Last updated at Dec. 16, 2024 by Teachoo
You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.
Misc 11 Integrate the function 1/(cosβ‘(π₯ + π) cosβ‘(π₯ + π) ) β«1βππ₯/cosβ‘γ(π₯ + π) cosβ‘γ(π₯ + π)γ γ Divide & Multiplying by π¬π’π§β‘(πβπ) =β«1βγsinβ‘(π β π)/sinβ‘(π β π) Γ 1/(cosβ‘(π₯ + π) cosβ‘(π₯ + π) )γ ππ₯ =1/sinβ‘(π β π) β«1βsinβ‘(π β π)/(cosβ‘(π₯ + π) cosβ‘(π₯ + π) ) ππ₯ =1/sinβ‘(π β π) β«1βsinβ‘(π β π + π₯ β π₯)/(cosβ‘(π₯ + π) cosβ‘(π₯ + π) ) ππ₯ =1/sinβ‘(π β π) β«1β(γsin γβ‘γ((π₯ + π)γ β (π₯ + π)) )/(cosβ‘(π₯ + π) cosβ‘(π₯ + π) ) ππ₯ We know that π ππβ‘(π΄βπ΅)=π ππβ‘π΄ πππ β‘π΅βπππ β‘π΄ π ππβ‘π΅ Replace A by (π₯+π) & B by (π₯+π) π ππβ‘((π₯+π)β(π₯+π))=π ππβ‘(π₯+π) πππ β‘(π₯+π)βπππ β‘(π₯+π) π ππβ‘(π₯+π) =1/sinβ‘(π β π) β«1β(π ππβ‘(π₯ + π) πππ β‘(π₯ + π) β πππ β‘(π₯ + π) π ππβ‘(π₯ + π)" " )/(cosβ‘(π₯ + π) cosβ‘(π₯ + π) ) ππ₯ =1/sinβ‘(π β π) β«1β((π ππβ‘(π₯ + π) πππ β‘(π₯ + π))/(cosβ‘(π₯ + π) cosβ‘(π₯ + π) ) β(cosβ‘(π₯ + π) sinβ‘(π₯ + π))/(cosβ‘(π₯ + π) cosβ‘(π₯ + π) )) ππ₯ =1/sinβ‘(π β π) β«1β(π ππβ‘(π₯ + π)/cosβ‘(π₯ + π) βπ ππβ‘(π₯ + π)/cosβ‘(π₯ + π) ) ππ₯ =1/sinβ‘(π β π) β«1β(tanβ‘(π₯+π) βtanβ‘(π₯+π) ) ππ₯ β«1βπππβ‘(π+π) π π Let (π₯+π)=π‘ Diff w.r.t. x 1+0=ππ‘/ππ₯ ππ₯=ππ‘ β«1βtanβ‘(π₯+π) ππ₯ =β«1βtanβ‘π‘ . ππ‘ =βlogβ‘|cosβ‘π‘ |+πΆ1 Putting value of π‘=π₯+π =βlogβ‘|cosβ‘γ(π₯+π)γ |+πΆ1 β«1βπππβ‘(π+π) π π Let (π₯+π)=π‘ Diff w.r.t.x 1+0=ππ‘/ππ₯ ππ₯=ππ‘ β«1βtanβ‘(π₯+π) ππ₯ =β«1βtanβ‘π‘ . ππ‘ =βlogβ‘|cosβ‘π‘ |+πΆ2 Putting value of π‘=π₯+π =βlogβ‘|cosβ‘γ(π₯+π)γ |+πΆ2 Thus, our equation becomes β«1β1/(cosβ‘(π₯ + π) cosβ‘(π₯ + π) ) ππ₯ =1/sinβ‘(π β π) β«1βγtanβ‘(π₯+π)βtanβ‘(π₯+π) γ ππ₯ =1/sinβ‘(π β π) [βlogβ‘|cosβ‘(π₯+π) |+πΆ1β(βlogβ‘|cosβ‘(π₯+π) |+πΆ2) =1/sinβ‘(π β π) [βlogβ‘|cosβ‘(π₯+π) |+logβ‘|cosβ‘(π₯+π) |+πΆ1+πΆ2] =1/sinβ‘(π β π) [βlogβ‘|cosβ‘(π₯+π) |+logβ‘|cosβ‘(π₯+π) | ]+π/πππβ‘(π + π) (πͺπ+πͺπ) =1/sinβ‘(π β π) [βlogβ‘|cosβ‘(π₯+π) |+logβ‘|cosβ‘(π₯+π) | ]+πͺ = π/πππβ‘(π β π) π₯π¨π |πππβ‘(π + π)/πππβ‘(π + π) |+πͺ ("log a β log b = log " π/π " " )