Misc 11 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Integration using trigo identities - a-b formulae
Integration using trigo identities - a-b formulae
Last updated at April 16, 2024 by Teachoo
Misc 11 Integrate the function 1/(cosβ‘(π₯ + π) cosβ‘(π₯ + π) ) β«1βππ₯/cosβ‘γ(π₯ + π) cosβ‘γ(π₯ + π)γ γ Divide & Multiplying by π¬π’π§β‘(πβπ) =β«1βγsinβ‘(π β π)/sinβ‘(π β π) Γ 1/(cosβ‘(π₯ + π) cosβ‘(π₯ + π) )γ ππ₯ =1/sinβ‘(π β π) β«1βsinβ‘(π β π)/(cosβ‘(π₯ + π) cosβ‘(π₯ + π) ) ππ₯ =1/sinβ‘(π β π) β«1βsinβ‘(π β π + π₯ β π₯)/(cosβ‘(π₯ + π) cosβ‘(π₯ + π) ) ππ₯ =1/sinβ‘(π β π) β«1β(γsin γβ‘γ((π₯ + π)γ β (π₯ + π)) )/(cosβ‘(π₯ + π) cosβ‘(π₯ + π) ) ππ₯ We know that π ππβ‘(π΄βπ΅)=π ππβ‘π΄ πππ β‘π΅βπππ β‘π΄ π ππβ‘π΅ Replace A by (π₯+π) & B by (π₯+π) π ππβ‘((π₯+π)β(π₯+π))=π ππβ‘(π₯+π) πππ β‘(π₯+π)βπππ β‘(π₯+π) π ππβ‘(π₯+π) =1/sinβ‘(π β π) β«1β(π ππβ‘(π₯ + π) πππ β‘(π₯ + π) β πππ β‘(π₯ + π) π ππβ‘(π₯ + π)" " )/(cosβ‘(π₯ + π) cosβ‘(π₯ + π) ) ππ₯ =1/sinβ‘(π β π) β«1β((π ππβ‘(π₯ + π) πππ β‘(π₯ + π))/(cosβ‘(π₯ + π) cosβ‘(π₯ + π) ) β(cosβ‘(π₯ + π) sinβ‘(π₯ + π))/(cosβ‘(π₯ + π) cosβ‘(π₯ + π) )) ππ₯ =1/sinβ‘(π β π) β«1β(π ππβ‘(π₯ + π)/cosβ‘(π₯ + π) βπ ππβ‘(π₯ + π)/cosβ‘(π₯ + π) ) ππ₯ =1/sinβ‘(π β π) β«1β(tanβ‘(π₯+π) βtanβ‘(π₯+π) ) ππ₯ β«1βπππβ‘(π+π) π π Let (π₯+π)=π‘ Diff w.r.t. x 1+0=ππ‘/ππ₯ ππ₯=ππ‘ β«1βtanβ‘(π₯+π) ππ₯ =β«1βtanβ‘π‘ . ππ‘ =βlogβ‘|cosβ‘π‘ |+πΆ1 Putting value of π‘=π₯+π =βlogβ‘|cosβ‘γ(π₯+π)γ |+πΆ1 β«1βπππβ‘(π+π) π π Let (π₯+π)=π‘ Diff w.r.t.x 1+0=ππ‘/ππ₯ ππ₯=ππ‘ β«1βtanβ‘(π₯+π) ππ₯ =β«1βtanβ‘π‘ . ππ‘ =βlogβ‘|cosβ‘π‘ |+πΆ2 Putting value of π‘=π₯+π =βlogβ‘|cosβ‘γ(π₯+π)γ |+πΆ2 Thus, our equation becomes β«1β1/(cosβ‘(π₯ + π) cosβ‘(π₯ + π) ) ππ₯ =1/sinβ‘(π β π) β«1βγtanβ‘(π₯+π)βtanβ‘(π₯+π) γ ππ₯ =1/sinβ‘(π β π) [βlogβ‘|cosβ‘(π₯+π) |+πΆ1β(βlogβ‘|cosβ‘(π₯+π) |+πΆ2) =1/sinβ‘(π β π) [βlogβ‘|cosβ‘(π₯+π) |+logβ‘|cosβ‘(π₯+π) |+πΆ1+πΆ2] =1/sinβ‘(π β π) [βlogβ‘|cosβ‘(π₯+π) |+logβ‘|cosβ‘(π₯+π) | ]+π/πππβ‘(π + π) (πͺπ+πͺπ) =1/sinβ‘(π β π) [βlogβ‘|cosβ‘(π₯+π) |+logβ‘|cosβ‘(π₯+π) | ]+πͺ = π/πππβ‘(π β π) π₯π¨π |πππβ‘(π + π)/πππβ‘(π + π) |+πͺ ("log a β log b = log " π/π " " )