Misc 5 - Integrate 1 / x1/2 + x1/3 - Class 12 NCERT - Miscellaneous

Misc 5 - Chapter 7 Class 12 Integrals - Part 2
Misc 5 - Chapter 7 Class 12 Integrals - Part 3

Go Ad-free

Transcript

Misc 5 Integrate the function 1/( ๐‘ฅ^(1/2) + ๐‘ฅ^(1/3) ) โˆซ1โ–’1/(๐‘ฅ^(1/2) + ๐‘ฅ^(1/3) ) ๐‘‘๐‘ฅ Let x = ๐‘ก^6 ๐‘‘๐‘ฅ/๐‘‘๐‘ก=6๐‘ก^5 dx = 6๐‘ก^5 dt Substituting value of x and dx the equation โˆซ1โ–’1/(๐‘ฅ^(1/2) + ๐‘ฅ^(1/3) ) ๐‘‘๐‘ฅ = โˆซ1โ–’ใ€–6๐‘กใ€—^5/(ใ€–ใ€–(๐‘กใ€—^6) ใ€—^(1/2) +ใ€–ใ€– (๐‘กใ€—^6) ใ€—^(1/3) ) = โˆซ1โ–’ใ€–6๐‘กใ€—^5/(๐‘ก^3 + ๐‘ก^2 ) ๐‘‘๐‘ก = 6โˆซ1โ–’๐‘ก^3/(๐‘ก + 1) ๐‘‘๐‘ก Adding and subtracting 1 in numerator = 6โˆซ1โ–’(๐‘ก^3 + 1 โˆ’ 1)/(๐‘ก + 1) ๐‘‘๐‘ก = 6โˆซ1โ–’((๐‘ก^3 + 1 )/(๐‘ก + 1)โˆ’1/(๐‘ก + 1)) ๐‘‘๐‘ก Using ๐‘Ž^3+๐‘^3=(๐‘Ž+๐‘)(๐‘Ž^2+๐‘^2โˆ’๐‘Ž๐‘) = 6โˆซ1โ–’((๐‘ก + 1)(๐‘ก^2+1^2 โˆ’ 1 ร— ๐‘ก))/(๐‘ก + 1)โˆ’1/(๐‘ก + 1) ๐‘‘๐‘ก = 6โˆซ1โ–’ใ€–(๐‘ก^2+1โˆ’๐‘ก)โˆ’1/(1 + ๐‘ก)ใ€— ๐‘‘๐‘ก = 6[๐‘ก^3/3+๐‘กโˆ’๐‘ก^2/2โˆ’๐‘™๐‘œ๐‘”|1+๐‘ก|]+ C = 2๐‘ก^3+6๐‘กโˆ’ใ€–3๐‘กใ€—^2โˆ’6 ๐‘™๐‘œ๐‘”|1+๐‘ก|+ C Putting back value of t = 2 ใ€–ใ€–(๐‘ฅใ€—^(1/6))ใ€—^3+6ใ€–(๐‘ฅใ€—^(1/6))โˆ’3 ใ€–ใ€–(๐‘ฅใ€—^(1/6))ใ€—^2โˆ’6 ๐‘™๐‘œ๐‘”|1+๐‘ฅ^(1/6) |+ C = 2๐‘ฅ^(1/2)+6๐‘ฅ^(1/6)โˆ’3๐‘ฅ^(1/3)โˆ’6 ๐‘™๐‘œ๐‘”|1+๐‘ฅ^(1/6) |+ C = 2โˆš๐’™โˆ’๐Ÿ‘๐’™^(๐Ÿ/๐Ÿ‘)+ใ€–๐Ÿ” ๐’™ใ€—^(๐Ÿ/๐Ÿ”)โˆ’๐Ÿ” ๐ฅ๐จ๐ โกใ€–(๐Ÿ+๐’™^(๐Ÿ/๐Ÿ”))ใ€—+ C Because (1+ใ€–๐‘ฅ ใ€—^(1/6)) is always positive

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo