Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11
Misc 12
Misc 13
Misc 14 Important
Misc 15
Misc 16
Misc 17
Misc 18 Important
Misc 19 Important
Misc 20
Misc 21
Misc 22
Misc 23 Important
Misc 24 Important
Misc 25 Important
Misc 26 Important
Misc 27 Important
Misc 28
Misc 29 Important
Misc 30 Important
Misc 31 Important
Misc 32
Misc 33
Misc 34
Misc 35
Misc 36 Important
Misc 37
Misc 38 (MCQ) Important
Misc 39 (MCQ)
Misc 40 (MCQ)
Integration Formula Sheet Important
Question 1 Important
Question 2 Important
Question 3 Important
Question 4 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Misc 1 (Method 1) Integrate the function 1/(π₯ β π₯^3 ) Solving integrand 1/(π₯ β π₯^3 )=1/π₯(1 β π₯^2 ) =π/π(π β π)(π + π) We can write it as π/π(π β π)(π + π) = π¨/π + π©/((π β π) ) + π/((π + π) ) 1/π₯(1 β π₯)(1 + π₯) = (π΄(1 β π₯) (1 + π₯) + π΅π₯ (1 + π₯) + πΆπ₯ (1 β π₯))/( π₯ (1 β π₯) (1 + π₯) ) Cancelling denominator π = π¨(π β π) (π + π) + π©π (π + π) + πͺπ (π β π) Putting π=π in (1) 1=π΄(1 β 0) (1 + 0) + π΅(0) (1 + 0) + πΆ(0) (1 β 0) 1=π΄ Γ 1 Γ 1 + π΅ Γ 0 + πΆ Γ 0 1=π΄+0+0 π¨=π Putting π=π in (1) 1 = π΄(1 β1) (1 +1) + π΅(1) (1 +1) + πΆ(1) (1 β1) 1 = π΄ Γ 0 + π΅ Γ (1) Γ (2) + πΆ Γ 0 1 = 0 +2π΅ + 0 π© = π/π Putting π=βπ in (1) 1 = π΄(1 β(β1)) (1 +(β1)) + π΅(β1) (1 +(β1)) + πΆ(β1) (1 β(β1)) 1 = π΄(1 + 1) (1 β1) + π΅(β1)(1β1) + πΆ(β1)(1+1) 1 = π΄ Γ 0 + π΅ Γ 0 + πΆ Γ(β1)(2) 1 = 0 +0 β2πΆ 1 = β2πΆ πͺ = βπ/π Hence we can write it as 1/π₯(1 β π₯)(1 + π₯) = 1/π₯ + (π/π)/((1 β π₯) ) + (β1/2)/((1 + π₯) ) π/π(π β π)(π + π) = π/π + π/π(π β π) + (βπ)/π(π + π) Therefore β«1βπ/π(π β π)(π + π) π π = β«1β1/π₯ ππ₯ + β«1β1/2(1 β π₯) ππ₯ + β«1β(β1)/2(1 + π₯) ππ₯ = β«1β1/π₯ ππ₯ + 1/2 β«1β1/((1 β π₯) ) ππ₯ β 1/2 β«1β1/((1 + π₯) ) ππ₯ = γπ₯π¨π γβ‘|π|+π/π [γπ₯π¨π γβ‘|π β π|/(βπ)] β1/2 γπ₯π¨π γβ‘|π + π|+πͺ = γlog γβ‘|π₯|β γ 1/2 log γβ‘|1 β π₯|β1/2 γlog γβ‘|1 + π₯|+πΆ = γlog γβ‘|π₯|β1/2 [γlog γβ‘|1 β π₯|+γlog γβ‘|1 + π₯| ]+πΆ = γlog γβ‘|π₯|β1/2 [γlog γβ‘|1 β π₯| |1 + π₯|]+πΆ As πππ π¨+πππ π©=logβ‘π΄π΅ = γlog γβ‘|π₯|β1/2 [γlog γβ‘|(1 β π₯^2 )| ]+πΆ = 1/2 [2 γlog γβ‘|π₯|βγlog γβ‘|(1 β π₯^2 )|+2πΆ] = 1/2 [γlog γβ‘γ|π₯|^2 γβγlog γβ‘|(1 β π₯^2 )|+πΎ] = π/π log |π^π/((π β π^π ) )|+π² As πππ π¨βπππ π©=πππ π΄/π΅ Misc 1 (Method 2) Integrate the function 1/(π₯ β π₯^3 ) Now, β«1βγ1/(π₯ β π₯^3 ) ππ₯γ Taking x3 common from the denominator =β«1β1/(π₯^3 (π₯/π₯^3 β 1) ) ππ₯ =β«1βπ/(π^π (π/π^π β π) ) π π Let t = π/π^π βπ Differentiating with respect to π₯ π/ππ₯ (1/π₯^2 β1)=ππ‘/ππ₯ (β2)/π₯^3 =ππ‘/ππ₯ π π=(π^π π π)/(βπ) Putting the value t and dt in the equation β«1βγπ/(π^π (π/π^π βπ) ) π πγ=β«1βγ1/(π₯^3 (π‘) ) Γ (π₯^3 ππ‘)/(β2)γ =β«1βγπ/(βπ) π π/πγ =(β1)/( 2) β«1βππ‘/π‘ =(β1)/( 2) πππ|π‘|+πΆ Putting back π=π/π^π βπ =(β1)/( 2) πππ|1/π₯^2 β1|+πΆ =(β1)/( 2) πππ|(π β π^π)/π^π |+πΆ = 1/2 log |(1 β π₯^2)/π₯^2 |^(βπ)+πΆ = π/π log |π^π/(π β π^π )|+πͺ (As a log b = log π^π)