Chapter 7 Class 12 Integrals
Concept wise

Slide27.JPG

Slide28.JPG
Slide29.JPG
Slide30.JPG
Slide31.JPG

Slide32.JPG Slide33.JPG Slide34.JPG

Go Ad-free

Transcript

Misc 1 (Method 1) Integrate the function 1/(π‘₯ βˆ’ π‘₯^3 ) Solving integrand 1/(π‘₯ βˆ’ π‘₯^3 )=1/π‘₯(1 βˆ’ π‘₯^2 ) =𝟏/𝒙(𝟏 βˆ’ 𝒙)(𝟏 + 𝒙) We can write it as 𝟏/𝒙(𝟏 βˆ’ 𝒙)(𝟏 + 𝒙) = 𝑨/𝒙 + 𝑩/((𝟏 βˆ’ 𝒙) ) + 𝒄/((𝟏 + 𝒙) ) 1/π‘₯(1 βˆ’ π‘₯)(1 + π‘₯) = (𝐴(1 βˆ’ π‘₯) (1 + π‘₯) + 𝐡π‘₯ (1 + π‘₯) + 𝐢π‘₯ (1 βˆ’ π‘₯))/( π‘₯ (1 βˆ’ π‘₯) (1 + π‘₯) ) Cancelling denominator 𝟏 = 𝑨(𝟏 βˆ’ 𝒙) (𝟏 + 𝒙) + 𝑩𝒙 (𝟏 + 𝒙) + π‘ͺ𝒙 (𝟏 βˆ’ 𝒙) Putting 𝒙=𝟎 in (1) 1=𝐴(1 βˆ’ 0) (1 + 0) + 𝐡(0) (1 + 0) + 𝐢(0) (1 βˆ’ 0) 1=𝐴 Γ— 1 Γ— 1 + 𝐡 Γ— 0 + 𝐢 Γ— 0 1=𝐴+0+0 𝑨=𝟏 Putting 𝒙=𝟏 in (1) 1 = 𝐴(1 βˆ’1) (1 +1) + 𝐡(1) (1 +1) + 𝐢(1) (1 βˆ’1) 1 = 𝐴 Γ— 0 + 𝐡 Γ— (1) Γ— (2) + 𝐢 Γ— 0 1 = 0 +2𝐡 + 0 𝑩 = 𝟏/𝟐 Putting 𝒙=βˆ’πŸ in (1) 1 = 𝐴(1 βˆ’(βˆ’1)) (1 +(βˆ’1)) + 𝐡(βˆ’1) (1 +(βˆ’1)) + 𝐢(βˆ’1) (1 βˆ’(βˆ’1)) 1 = 𝐴(1 + 1) (1 βˆ’1) + 𝐡(βˆ’1)(1βˆ’1) + 𝐢(βˆ’1)(1+1) 1 = 𝐴 Γ— 0 + 𝐡 Γ— 0 + 𝐢 Γ—(βˆ’1)(2) 1 = 0 +0 βˆ’2𝐢 1 = βˆ’2𝐢 π‘ͺ = βˆ’πŸ/𝟐 Hence we can write it as 1/π‘₯(1 βˆ’ π‘₯)(1 + π‘₯) = 1/π‘₯ + (𝟏/𝟐)/((1 βˆ’ π‘₯) ) + (βˆ’1/2)/((1 + π‘₯) ) 𝟏/𝒙(𝟏 βˆ’ 𝒙)(𝟏 + 𝒙) = 𝟏/𝒙 + 𝟏/𝟐(𝟏 βˆ’ 𝒙) + (βˆ’πŸ)/𝟐(𝟏 + 𝒙) Therefore ∫1β–’πŸ/𝒙(𝟏 βˆ’ 𝒙)(𝟏 + 𝒙) 𝒅𝒙 = ∫1β–’1/π‘₯ 𝑑π‘₯ + ∫1β–’1/2(1 βˆ’ π‘₯) 𝑑π‘₯ + ∫1β–’(βˆ’1)/2(1 + π‘₯) 𝑑π‘₯ = ∫1β–’1/π‘₯ 𝑑π‘₯ + 1/2 ∫1β–’1/((1 βˆ’ π‘₯) ) 𝑑π‘₯ βˆ’ 1/2 ∫1β–’1/((1 + π‘₯) ) 𝑑π‘₯ = γ€–π₯𝐨𝐠 〗⁑|𝒙|+𝟏/𝟐 [γ€–π₯𝐨𝐠 〗⁑|𝟏 βˆ’ 𝒙|/(βˆ’πŸ)] βˆ’1/2 γ€–π₯𝐨𝐠 〗⁑|𝟏 + 𝒙|+π‘ͺ = γ€–log 〗⁑|π‘₯|βˆ’ γ€– 1/2 log 〗⁑|1 βˆ’ π‘₯|βˆ’1/2 γ€–log 〗⁑|1 + π‘₯|+𝐢 = γ€–log 〗⁑|π‘₯|βˆ’1/2 [γ€–log 〗⁑|1 βˆ’ π‘₯|+γ€–log 〗⁑|1 + π‘₯| ]+𝐢 = γ€–log 〗⁑|π‘₯|βˆ’1/2 [γ€–log 〗⁑|1 βˆ’ π‘₯| |1 + π‘₯|]+𝐢 As π’π’π’ˆ 𝑨+π’π’π’ˆ 𝑩=log⁑𝐴𝐡 = γ€–log 〗⁑|π‘₯|βˆ’1/2 [γ€–log 〗⁑|(1 βˆ’ π‘₯^2 )| ]+𝐢 = 1/2 [2 γ€–log 〗⁑|π‘₯|βˆ’γ€–log 〗⁑|(1 βˆ’ π‘₯^2 )|+2𝐢] = 1/2 [γ€–log 〗⁑〖|π‘₯|^2 γ€—βˆ’γ€–log 〗⁑|(1 βˆ’ π‘₯^2 )|+𝐾] = 𝟏/𝟐 log |𝒙^𝟐/((𝟏 βˆ’ 𝒙^𝟐 ) )|+𝑲 As π’π’π’ˆ π‘¨βˆ’π’π’π’ˆ 𝑩=π‘™π‘œπ‘” 𝐴/𝐡 Misc 1 (Method 2) Integrate the function 1/(π‘₯ βˆ’ π‘₯^3 ) Now, ∫1β–’γ€–1/(π‘₯ βˆ’ π‘₯^3 ) 𝑑π‘₯γ€— Taking x3 common from the denominator =∫1β–’1/(π‘₯^3 (π‘₯/π‘₯^3 βˆ’ 1) ) 𝑑π‘₯ =∫1β–’πŸ/(𝒙^πŸ‘ (𝟏/𝒙^𝟐 βˆ’ 𝟏) ) 𝒅𝒙 Let t = 𝟏/𝒙^𝟐 βˆ’πŸ Differentiating with respect to π‘₯ 𝑑/𝑑π‘₯ (1/π‘₯^2 βˆ’1)=𝑑𝑑/𝑑π‘₯ (βˆ’2)/π‘₯^3 =𝑑𝑑/𝑑π‘₯ 𝒅𝒙=(𝒙^πŸ‘ 𝒅𝒕)/(βˆ’πŸ) Putting the value t and dt in the equation ∫1β–’γ€–πŸ/(𝒙^πŸ‘ (𝟏/𝒙^𝟐 βˆ’πŸ) ) 𝒅𝒙〗=∫1β–’γ€–1/(π‘₯^3 (𝑑) ) Γ— (π‘₯^3 𝑑𝑑)/(βˆ’2)γ€— =∫1β–’γ€–πŸ/(βˆ’πŸ) 𝒅𝒕/𝒕〗 =(βˆ’1)/( 2) ∫1▒𝑑𝑑/𝑑 =(βˆ’1)/( 2) π‘™π‘œπ‘”|𝑑|+𝐢 Putting back 𝒕=𝟏/𝒙^𝟐 βˆ’πŸ =(βˆ’1)/( 2) π‘™π‘œπ‘”|1/π‘₯^2 βˆ’1|+𝐢 =(βˆ’1)/( 2) π‘™π‘œπ‘”|(𝟏 βˆ’ 𝒙^𝟐)/𝒙^𝟐 |+𝐢 = 1/2 log |(1 βˆ’ π‘₯^2)/π‘₯^2 |^(βˆ’πŸ)+𝐢 = 𝟏/𝟐 log |𝒙^𝟐/(𝟏 βˆ’ 𝒙^𝟐 )|+π‘ͺ (As a log b = log 𝑏^π‘Ž)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo