Example 42 - Chapter 7 Class 12 Integrals (Important Question)
Last updated at Dec. 16, 2024 by Teachoo
Chapter 7 Class 12 Integrals
Ex 7.1, 18 Important
Ex 7.1, 20
Ex 7.2, 20 Important
Ex 7.2, 26 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.3, 6 Important
Ex 7.3, 13 Important
Ex 7.3, 18 Important
Ex 7.3, 22 Important
Ex 7.3, 24 (MCQ) Important
Example 9 (i)
Example 10 (i)
Ex 7.4, 8 Important
Ex 7.4, 15 Important
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 25 (MCQ) Important
Example 15 Important
Ex 7.5, 9 Important
Ex 7.5, 11 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 21 Important
Example 20 Important
Example 22 Important
Ex 7.6, 13 Important
Ex 7.6, 14 Important
Ex 7.6, 18 Important
Ex 7.6, 19
Ex 7.6, 24 (MCQ) Important
Ex 7.7, 5 Important
Ex 7.7, 10
Ex 7.7, 11 Important
Question 1 Important
Question 4 Important
Question 6 Important
Example 25 (i)
Ex 7.8, 15
Ex 7.8, 16 Important
Ex 7.8, 20 Important
Ex 7.8, 22 (MCQ)
Ex 7.9, 4
Ex 7.9, 7 Important
Ex 7.9, 8
Ex 7.9, 9 (MCQ) Important
Example 28 Important
Example 32 Important
Example 34 Important
Ex 7.10,8 Important
Ex 7.10, 18 Important
Example 38 Important
Example 39 Important
Example 42 Important You are here
Misc 18 Important
Misc 8 Important
Question 1 Important
Misc 23 Important
Misc 29 Important
Question 2 Important
Misc 38 (MCQ) Important
Question 4 (MCQ) Important
Integration Formula Sheet Important
Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Example 42 Evaluate β«_0^πβ(π₯ ππ₯)/(π^2 cos^2β‘γπ₯ + π^2 γ sin^2β‘π₯ )Let I= β«_0^πβγπ₯/(π^2 πππ ^2 π₯ + π^2 π ππ^2 π₯) ππ₯γ β΄ I=β«_0^πβγ((π β π₯))/(π^2 πππ ^2 (π β π₯) + π^2 π ππ^2 (π β π₯) ) ππ₯γ I=β«_0^πβγ(π β π₯)/(π^2 [πππ (π β π₯)]^2 + π^2 [π ππ(π β π₯)]^2 ) ππ₯γ I=β«_0^πβγ(π β π₯)/(π^2 [β πππ π₯]^2 + π^2 [π ππ π₯]^2 ) ππ₯γ I=β«_0^πβγ(π β π₯)/(π^2 cos^2β‘π₯ + π^2 sin^2β‘π₯ ) ππ₯γ Adding (1) and (2) i.e. (1) + (2) I+I=β«_0^πβγπ₯/(π^2 cos^2β‘π₯ + π^2 sin^2β‘π₯ ) ππ₯γ+β«1β(π β π₯)/(π^2 cos^2β‘π₯ + π^2 sin^2β‘π₯ ) ππ₯ 2I=β«_0^πβ(π₯ + π β π₯)/(π^2 cos^2β‘π₯ + π^2 sin^2β‘π₯ ) ππ₯ 2I=β«_0^πβ(π )/(π^2 cos^2β‘π₯ + π^2 sin^2β‘π₯ ) ππ₯ I=π/2 β«_0^πβγ1/(π^2 cos^2β‘π₯ + π^2 sin^2β‘π₯ ) ππ₯γ Dividing numerator and denominator by πππ ^2 π₯, we get I=π/2 β«_0^πβγ(1/cos^2β‘π₯ )/((π^2 cos^2β‘γπ₯ + π^2 sin^2β‘π₯ γ)/cos^2β‘π₯ ) ππ₯γ I=π/2 β«_0^πβγ(π ππ^2 π₯)/((π^2 cos^2β‘π₯)/cos^2β‘π₯ + (π^2 sin^2β‘π₯)/cos^2β‘π₯ ) ππ₯γ I=π/2 β«_0^πβγ(π ππ^2 π₯)/(π^2 + π^2 tan^2β‘π₯ ) ππ₯γ Let π(π₯)=sec^2β‘π₯/(π^2 + π^2 tan^2β‘π₯ ) and a = Ο Now, π(2πβπ₯)=sec^2β‘(π β π₯)/(π^2 + π^2 tan^2β‘(π β π₯) ) π(2πβπ₯)=[βπ ππ π₯]^2/(π^2 + π^2 [βtanβ‘π₯ ]^2 ) π(2πβπ₯)=(π ππ^2 π₯)/(π^2 + π^2 tan^2β‘π₯ ) Therefore, π(π₯)=π(2πβπ₯) Therefore, I=π/2 β«_0^πβγ(π ππ^2 π₯)/(π^2 + π^2 tan^2β‘π₯ ) ππ₯γ =π/2 Γ 2 β«_0^(π/2)βγ(π ππ^2 π₯)/(π^2 + π^2 tan^2β‘π₯ ) ππ₯γ =πβ«_0^(π/2)βγ(π ππ^2 π₯)/(π^2 + π^2 tan^2β‘π₯ ) ππ₯γ Let π tanβ‘γπ₯=π‘γ Differentiating both sides w.r.t. π₯ π π ππ^2 π₯ ππ₯=ππ‘ ππ‘=ππ‘/(π^2 π ππ^2 π₯) Putting the values of tan π₯ and ππ₯ , we get πΌ=πβ«1_0^(π/2)βγ(π ππ^2 π₯)/(π^2 + π‘^2 ) . ππ₯γ πΌ=π β«1_0^ββγ(π ππ^2 π₯)/(π^2 + π‘^2 ) .ππ‘/(π π ππ^2 π₯)γ πΌ=π/π β«1_0^ββππ‘/(π^2 + π‘^2 ) πΌ= γπ/π [1/π tan^(β1)β‘(π‘/π) ]γ_0^β Putting limits, I=π/π [1/π γπ‘ππγ^(β1) (β/π)β1/π γπ‘ππγ^(β1) (0/π)] I =π/π [γ1/π tan^(β1)γβ‘γ(β)β1/π tan^(β1)β‘(0) γ ] I =π/π (1/π (π/2)β0) I =π ^π/πππ