Chapter 7 Class 12 Integrals
Concept wise

      Slide50.JPG

Slide51.JPG
Slide52.JPG
Slide53.JPG
Slide54.JPG Slide55.JPG Slide56.JPG

Go Ad-free

Transcript

Example 42 Evaluate ∫_0^πœ‹β–’(π‘₯ 𝑑π‘₯)/(π‘Ž^2 cos^2⁑〖π‘₯ + 𝑏^2 γ€— sin^2⁑π‘₯ )Let I= ∫_0^πœ‹β–’γ€–π‘₯/(π‘Ž^2 π‘π‘œπ‘ ^2 π‘₯ + 𝑏^2 𝑠𝑖𝑛^2 π‘₯) 𝑑π‘₯γ€— ∴ I=∫_0^πœ‹β–’γ€–((πœ‹ βˆ’ π‘₯))/(π‘Ž^2 π‘π‘œπ‘ ^2 (πœ‹ βˆ’ π‘₯) + 𝑏^2 𝑠𝑖𝑛^2 (πœ‹ βˆ’ π‘₯) ) 𝑑π‘₯γ€— I=∫_0^πœ‹β–’γ€–(πœ‹ βˆ’ π‘₯)/(π‘Ž^2 [π‘π‘œπ‘ (πœ‹ βˆ’ π‘₯)]^2 + 𝑏^2 [𝑠𝑖𝑛(πœ‹ βˆ’ π‘₯)]^2 ) 𝑑π‘₯γ€— I=∫_0^πœ‹β–’γ€–(πœ‹ βˆ’ π‘₯)/(π‘Ž^2 [βˆ’ π‘π‘œπ‘  π‘₯]^2 + 𝑏^2 [𝑠𝑖𝑛 π‘₯]^2 ) 𝑑π‘₯γ€— I=∫_0^πœ‹β–’γ€–(πœ‹ βˆ’ π‘₯)/(π‘Ž^2 cos^2⁑π‘₯ + 𝑏^2 sin^2⁑π‘₯ ) 𝑑π‘₯γ€— Adding (1) and (2) i.e. (1) + (2) I+I=∫_0^πœ‹β–’γ€–π‘₯/(π‘Ž^2 cos^2⁑π‘₯ + 𝑏^2 sin^2⁑π‘₯ ) 𝑑π‘₯γ€—+∫1β–’(πœ‹ βˆ’ π‘₯)/(π‘Ž^2 cos^2⁑π‘₯ + 𝑏^2 sin^2⁑π‘₯ ) 𝑑π‘₯ 2I=∫_0^πœ‹β–’(π‘₯ + πœ‹ βˆ’ π‘₯)/(π‘Ž^2 cos^2⁑π‘₯ + 𝑏^2 sin^2⁑π‘₯ ) 𝑑π‘₯ 2I=∫_0^πœ‹β–’(πœ‹ )/(π‘Ž^2 cos^2⁑π‘₯ + 𝑏^2 sin^2⁑π‘₯ ) 𝑑π‘₯ I=πœ‹/2 ∫_0^πœ‹β–’γ€–1/(π‘Ž^2 cos^2⁑π‘₯ + 𝑏^2 sin^2⁑π‘₯ ) 𝑑π‘₯γ€— Dividing numerator and denominator by π‘π‘œπ‘ ^2 π‘₯, we get I=πœ‹/2 ∫_0^πœ‹β–’γ€–(1/cos^2⁑π‘₯ )/((π‘Ž^2 cos^2⁑〖π‘₯ + 𝑏^2 sin^2⁑π‘₯ γ€—)/cos^2⁑π‘₯ ) 𝑑π‘₯γ€— I=πœ‹/2 ∫_0^πœ‹β–’γ€–(𝑠𝑒𝑐^2 π‘₯)/((π‘Ž^2 cos^2⁑π‘₯)/cos^2⁑π‘₯ + (𝑏^2 sin^2⁑π‘₯)/cos^2⁑π‘₯ ) 𝑑π‘₯γ€— I=πœ‹/2 ∫_0^πœ‹β–’γ€–(𝑠𝑒𝑐^2 π‘₯)/(π‘Ž^2 + 𝑏^2 tan^2⁑π‘₯ ) 𝑑π‘₯γ€— Let 𝑓(π‘₯)=sec^2⁑π‘₯/(π‘Ž^2 + 𝑏^2 tan^2⁑π‘₯ ) and a = Ο€ Now, 𝑓(2π‘Žβˆ’π‘₯)=sec^2⁑(πœ‹ βˆ’ π‘₯)/(π‘Ž^2 + 𝑏^2 tan^2⁑(πœ‹ βˆ’ π‘₯) ) 𝑓(2π‘Žβˆ’π‘₯)=[βˆ’π‘ π‘’π‘ π‘₯]^2/(π‘Ž^2 + 𝑏^2 [βˆ’tan⁑π‘₯ ]^2 ) 𝑓(2π‘Žβˆ’π‘₯)=(𝑠𝑒𝑐^2 π‘₯)/(π‘Ž^2 + 𝑏^2 tan^2⁑π‘₯ ) Therefore, 𝑓(π‘₯)=𝑓(2π‘Žβˆ’π‘₯) Therefore, I=πœ‹/2 ∫_0^πœ‹β–’γ€–(𝑠𝑒𝑐^2 π‘₯)/(π‘Ž^2 + 𝑏^2 tan^2⁑π‘₯ ) 𝑑π‘₯γ€— =πœ‹/2 Γ— 2 ∫_0^(πœ‹/2)β–’γ€–(𝑠𝑒𝑐^2 π‘₯)/(π‘Ž^2 + 𝑏^2 tan^2⁑π‘₯ ) 𝑑π‘₯γ€— =πœ‹βˆ«_0^(πœ‹/2)β–’γ€–(𝑠𝑒𝑐^2 π‘₯)/(π‘Ž^2 + 𝑏^2 tan^2⁑π‘₯ ) 𝑑π‘₯γ€— Let 𝑏 tan⁑〖π‘₯=𝑑〗 Differentiating both sides w.r.t. π‘₯ 𝑏 𝑠𝑒𝑐^2 π‘₯ 𝑑π‘₯=𝑑𝑑 𝑑𝑑=𝑑𝑑/(𝑏^2 𝑠𝑒𝑐^2 π‘₯) Putting the values of tan π‘₯ and 𝑑π‘₯ , we get 𝐼=πœ‹βˆ«1_0^(πœ‹/2)β–’γ€–(𝑠𝑒𝑐^2 π‘₯)/(π‘Ž^2 + 𝑑^2 ) . 𝑑π‘₯γ€— 𝐼=πœ‹ ∫1_0^βˆžβ–’γ€–(𝑠𝑒𝑐^2 π‘₯)/(π‘Ž^2 + 𝑑^2 ) .𝑑𝑑/(𝑏 𝑠𝑒𝑐^2 π‘₯)γ€— 𝐼=πœ‹/𝑏 ∫1_0^βˆžβ–’π‘‘π‘‘/(π‘Ž^2 + 𝑑^2 ) 𝐼= γ€–πœ‹/𝑏 [1/π‘Ž tan^(βˆ’1)⁑(𝑑/π‘Ž) ]γ€—_0^∞ Putting limits, I=πœ‹/𝑏 [1/π‘Ž γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (∞/π‘Ž)βˆ’1/π‘Ž γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (0/π‘Ž)] I =πœ‹/𝑏 [γ€–1/π‘Ž tan^(βˆ’1)〗⁑〖(∞)βˆ’1/π‘Ž tan^(βˆ’1)⁑(0) γ€— ] I =πœ‹/𝑏 (1/π‘Ž (πœ‹/2)βˆ’0) I =𝝅^𝟐/πŸπ’‚π’ƒ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo