Chapter 7 Class 12 Integrals
Concept wise

Slide40.JPG

Slide41.JPG
Slide42.JPG
Slide43.JPG
Slide44.JPG Slide45.JPG Slide46.JPG Slide47.JPG Slide48.JPG Slide49.JPG

Go Ad-free

Transcript

Example 41 (Introduction) Evaluate ∫_(βˆ’1)^(3/2)β–’|π‘₯ sin⁑(πœ‹ π‘₯) | 𝑑π‘₯ To find sign of |π‘₯ sin⁑(πœ‹ π‘₯) | in the interval, let us check sign of x and sin⁑〖 (πœ‹π‘₯) γ€—separately π‘₯ > 0 & π‘₯ sin⁑〖 (πœ‹π‘₯) γ€—> 0 π‘₯ < 0 & π‘₯ sin⁑〖 (πœ‹π‘₯) γ€—> 0 Sign of x We have Interval βˆ’1< π‘₯ < 3/2 Sign of 𝐬𝐒𝐧⁑〖(𝝅𝒙)γ€— Here, βˆ’1≀π‘₯≀3/2 βˆ’πœ‹ β‰€πœ‹π‘₯≀3πœ‹/2 Let πœƒ=πœ‹π‘₯ ∴ βˆ’πœ‹ ≀θ≀3πœ‹/2 From graph it is seen, Now, Sign for π‘₯ sin⁑(πœ‹π‘₯) in interval –1 ≀ x ≀ 3/2 is So, we can write |π‘₯ 𝑠𝑖𝑛 (Ο€π‘₯)|={β–ˆ(π‘₯ sin⁑〖 (πœ‹π‘₯)γ€— βˆ’1 ≀ π‘₯ ≀ 1@&βˆ’π‘₯ sin⁑〖 (πœ‹π‘₯)γ€— 1 ≀ π‘₯ ≀ 3/2)─ Example 41 Evaluate ∫_(βˆ’1)^(3/2)β–’|π‘₯ sin⁑(πœ‹ π‘₯) | 𝑑π‘₯ Solving ∫1▒〖𝒙 π’”π’Šπ’β‘γ€– (𝝅𝒙) 𝒅𝒙〗 γ€— separately ∫1β–’γ€–π‘₯ sin⁑〖 (πœ‹π‘₯) 𝑑π‘₯γ€— γ€— = x ∫1β–’sin⁑〖(πœ‹π‘₯)βˆ’βˆ«1β–’(𝑑(π‘₯)/𝑑π‘₯ ∫1β–’sin⁑〖(πœ‹π‘₯) γ€— ) γ€— 𝑑π‘₯ = x ((βˆ’cos⁑〖(πœ‹π‘₯))γ€—)/πœ‹βˆ’βˆ«1β–’1((βˆ’cos⁑〖(πœ‹π‘₯)γ€—)/πœ‹) 𝑑π‘₯ = (βˆ’ π‘₯ cos⁑〖(πœ‹π‘₯) γ€—)/πœ‹+∫1β–’cos⁑〖(πœ‹π‘₯)γ€—/πœ‹ 𝑑π‘₯ = (βˆ’π‘₯ cos⁑〖(πœ‹π‘₯)γ€—)/πœ‹+ sin⁑〖(πœ‹π‘₯)γ€—/πœ‹^2 ∫_(βˆ’πŸ)^πŸβ–’γ€–π’™ 𝐬𝐒𝐧⁑〖𝝅𝒙 𝒅𝒙〗 γ€— = [(βˆ’π‘₯ cos⁑〖(πœ‹π‘₯)γ€—)/πœ‹+sin⁑〖(πœ‹π‘₯)γ€—/πœ‹^2 ]_(βˆ’1)^1 = ((βˆ’1 cosβ‘πœ‹)/πœ‹+sinβ‘πœ‹/πœ‹^2 ) βˆ’((βˆ’(βˆ’1)cos⁑〖(βˆ’πœ‹)γ€—)/πœ‹+sin⁑〖(βˆ’πœ‹)γ€—/πœ‹^2 ) = ((βˆ’1 Γ— (βˆ’1))/πœ‹+0/πœ‹^2 ) βˆ’(cosβ‘πœ‹/πœ‹+γ€–βˆ’ sinγ€—β‘πœ‹/πœ‹^2 ) = (1/πœ‹+0)βˆ’((βˆ’1)/πœ‹+0) = 1/πœ‹+1/πœ‹ = 2/πœ‹ Putting limits ∫_𝟏^(πŸ‘/𝟐)▒〖𝒙 𝐬𝐒𝐧⁑〖𝝅𝒙 𝒅𝒙〗 γ€— = [(βˆ’π‘₯ cos⁑〖(πœ‹π‘₯)γ€—)/πœ‹+sin⁑〖(πœ‹π‘₯)γ€—/πœ‹^2 ]_1^(3/2) = (((βˆ’3)/2 cos⁑(3πœ‹/2))/πœ‹+sin⁑((3πœ‹ )/2)/πœ‹^2 )βˆ’((βˆ’1 cosβ‘πœ‹)/πœ‹+sinβ‘πœ‹/πœ‹^2 ) = (0+((βˆ’1))/πœ‹^2 )βˆ’((βˆ’1 Γ— βˆ’1)/πœ‹+0/πœ‹^2 ) = (βˆ’1)/πœ‹^2 βˆ’1/πœ‹ Now, ∴ ∫_(βˆ’1)^(3/2)β–’|π‘₯ sin⁑(πœ‹π‘₯) | 𝑑π‘₯ = ∫_(βˆ’1)^1β–’γ€–π‘₯ sin⁑〖 (πœ‹π‘₯) 𝑑π‘₯ βˆ’βˆ«_1^(3/2)β–’γ€–π‘₯ 𝑠𝑖𝑛〗〗 γ€—(πœ‹π‘₯) 𝑑π‘₯ = 2/πœ‹βˆ’((βˆ’1)/πœ‹^2 βˆ’1/πœ‹) = 2/πœ‹+1/πœ‹^2 +1/πœ‹ = πŸ‘/𝝅+𝟏/𝝅^𝟐

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo