Slide31.JPG

Slide32.JPG
Slide33.JPG
Slide34.JPG
Slide35.JPG Slide36.JPG Slide37.JPG

Go Ad-free

Transcript

Example 39 Evaluate ∫1β–’[√(cot⁑π‘₯ )+√(tan⁑π‘₯ )] 𝑑π‘₯ ∫1β–’[√(cot⁑π‘₯ )+√(tan⁑π‘₯ )] 𝑑π‘₯ =∫1β–’[√(cot⁑π‘₯ )+1/√(cot⁑π‘₯ )] 𝑑π‘₯ =∫1β–’[(cot⁑π‘₯ + 1)/√(cot⁑π‘₯ )] 𝑑π‘₯ =∫1β–’[√(tan⁑π‘₯ ) (cot⁑π‘₯+1)] 𝑑π‘₯ Let tan⁑π‘₯=𝑑^2 Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯. sec^2 π‘₯=2𝑑 𝑑𝑑/𝑑π‘₯ 1+tan^2 π‘₯=2𝑑 . 𝑑𝑑/𝑑π‘₯ 1+(𝑑^2 )^2=2𝑑 . 𝑑𝑑/𝑑π‘₯ 1+𝑑^4=2𝑑 . 𝑑𝑑/𝑑π‘₯ (1+𝑑^4 ) 𝑑π‘₯=2𝑑 𝑑𝑑 𝑑π‘₯=2𝑑/(1 + 𝑑^4 ) . 𝑑𝑑 Putting values of t & dt, we get ∫1β–’[√(tan⁑π‘₯ ) (cot⁑π‘₯+1)] 𝑑π‘₯ = ∫1β–’[√(𝑑^2 ) (cot⁑π‘₯+1)] 𝑑π‘₯ = ∫1β–’[√(𝑑^2 ) (1/tan⁑π‘₯ +1)] 𝑑π‘₯ = ∫1▒𝑑[1/𝑑^2 +1] 𝑑π‘₯ = ∫1▒𝑑[(1 + 𝑑^2)/𝑑^2 ] Γ—2𝑑/(1 + 𝑑^4 ) . 𝑑𝑑 = ∫1β–’2[(1 + 𝑑^2)/(1 + 𝑑^4 )] 𝑑𝑑 = 2∫1β–’(1 + 𝑑^2)/(1 + 𝑑^4 ) 𝑑𝑑 Dividing numerator and denominator by 𝑑^2 = 2 ∫1β–’((1 + 𝑑^2)/𝑑^2 )/((1 + 𝑑^4)/𝑑^2 ) . 𝑑𝑑 = 2 ∫1β–’(1/𝑑^2 + 1)/(1/𝑑^2 + 𝑑^2 ) . 𝑑𝑑 = 2 ∫1β–’(1/𝑑^2 + 1)/(1/𝑑^2 + 𝑑^2 ) . 𝑑𝑑 = 2 ∫1β–’(1 + 1/𝑑^2 )/( 𝑑^2 + 1/𝑑^2 + 2 βˆ’ 2) . 𝑑𝑑 = 2 ∫1β–’(1 + 1/𝑑^2 )/( (𝑑)^2 + (1/𝑑)^2βˆ’ 2 (𝑑) (1/𝑑) + 2) . 𝑑𝑑 = 2 ∫1β–’(1 + 1/𝑑^2 )/((𝑑 βˆ’ 1/𝑑)^2 + 2) . 𝑑𝑑 = 2 ∫1β–’(1 + 1/𝑑^2 )/((𝑑 βˆ’ 1/𝑑)^2 +(√2 )^2 ) . 𝑑𝑑 Let π‘‘βˆ’1/𝑑=𝑦 Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯. 1+ 1/𝑑^2 = 𝑑𝑦/𝑑𝑑 𝑑𝑑 =𝑑𝑦/((1 + 1/𝑑^2 ) ) Putting the values of (1/t βˆ’t) and dt, we get = 2 ∫1β–’(1 + 1/𝑑^2 )/(𝑦^2 +(√2 )^2 ) . 𝑑𝑑 = 2 ∫1β–’((1 + 1/𝑑^2 ))/(𝑦^2 + (√2 )^2 ) Γ— 𝑑𝑦/((1 + 1/𝑑^2 ) ) = 2 ∫1β–’1/(𝑦^2 + (√2 )^2 ) . 𝑑𝑦 = 2(1/√2 tan^(βˆ’1)⁑〖 𝑦/√2γ€— +𝐢1) = 2/√2 tan^(βˆ’1)⁑〖 𝑦/√2γ€— +2𝐢1 = √2 tan^(βˆ’1)⁑〖 (1/𝑑 βˆ’ 𝑑)/√2γ€— +2𝐢1 = √2 tan^(βˆ’1)⁑〖 (𝑑^2 βˆ’ 1)/(√2 𝑑)γ€— +𝐢 = √2 tan^(βˆ’1)⁑((tan⁑π‘₯ βˆ’ 1)/(√2 √(tan⁑π‘₯ )))+𝐢 = √𝟐 〖𝒕𝒂𝒏〗^(βˆ’πŸ)⁑((𝒕𝒂𝒏⁑𝒙 βˆ’ 𝟏)/(√(𝟐 𝒕𝒂𝒏⁑𝒙 ) ))+π‘ͺ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo