Example 37 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Examples
Example 1 (ii)
Example 1 (iii)
Example 2 (i)
Example 2 (ii)
Example 2 (iii) Important
Example 3 (i)
Example 3 (ii) Important
Example 3 (iii)
Example 4
Example 5 (i)
Example 5 (ii)
Example 5 (iii) Important
Example 5 (iv) Important
Example 6 (i)
Example 6 (ii) Important
Example 6 (iii) Important
Example 7 (i)
Example 7 (ii) Important
Example 7 (iii)
Example 8 (i)
Example 8 (ii) Important
Example 9 (i)
Example 9 (ii) Important
Example 9 (iii) Important
Example 10 (i)
Example 10 (ii) Important
Example 11
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important
Example 21 Important
Example 22 Important
Example 23
Example 24
Example 25 (i)
Example 25 (ii) Important
Example 25 (iii)
Example 25 (iv) Important
Example 26
Example 27
Example 28 Important
Example 29
Example 30
Example 31
Example 32 Important
Example 33 Important
Example 34 Important
Example 35
Example 36 Important
Example 37 Important You are here
Example 38 Important
Example 39 Important
Example 40 Important
Example 41 Important
Example 42 Important
Question 1 Important
Question 2
Question 3 (Supplementary NCERT) Important
Last updated at Dec. 16, 2024 by Teachoo
You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.
Example 37 Evaluate β«1β(π₯^4 ππ₯)/(π₯ β1)(π₯^2 + 1) Let I = β«1β(π₯^4 ππ₯)/(π₯ β1)(π₯^2 + 1) ππ₯ We can write π₯^4/(π₯ β1)(π₯^2 + 1) = π₯^4/(π₯^3 β π₯^2+ π₯ β 1) Dividing Numerator by denominator as follows. Hence π₯^4 = (π₯^3βπ₯^2+π₯+1) (π₯+1)+1 Thus, π₯^4/(π₯^3 β π₯^2 + π₯ + 1) = (π₯+1)+1/(π₯^3 β π₯^2 + π₯ + 1) = (π₯+1)+1/((π₯ β 1) (π₯^2 +1) ) Now, we can write 1/((π₯^2 + 1) (π₯ β 1) )= (π΄π₯ + π΅)/(π₯^2 + 1) + πΆ/(π₯ β 1) 1/((π₯^2 + 1) (π₯ β 1) )= ((π΄π₯ + π΅)(π₯ β 1) + πΆ (π₯^2 + 1))/((π₯^2 + 1)(π₯ β1)) Canceling denominator 1 = (π΄π₯ + π΅)(π₯ β 1) + πΆ (π₯^2 + 1) Putting x = 1 1 = (π΄(1) + π΅)(1β1) + πΆ ((β1)^2 + 1) 1 = (π΄+π΅)(0)+ πΆ (1+1) 1 = 2πΆ πΆ=1/2 Putting x = 0 1 = (π΄π₯ + π΅)(π₯ β 1) + πΆ (π₯^2 + 1) 1 = (π΄(0) + π΅)(0β1) + πΆ (0^2+1) 1 = (π΅)(β1) + πΆ (1) 1 = πΆ β"B" B =πΆβ1 B =1/2 β1 B =(β1)/2 Putting x = β 1 1 = (π΄π₯ + π΅)(π₯ β 1) + πΆ (π₯^2 + 1) 1 = (π΄(β1)+ π΅)(β1β1) + πΆ ((β1)^2+1) 1 = (βπ΄+π΅)(β2)+πΆ (1+1) 1 = (π΄βπ΅)2+πΆ (2) 1/2=π΄βπ΅+πΆ π΄=1/2+π΅βπΆ π΄ =1/2β1/2β1/2 π΄ =(β1)/2 Hence we can write 1/((π₯^2 + 1) (π₯ β 1) )= (π΄π₯ + π΅)/(π₯^2 + 1) + πΆ/(π₯ β 1) 1/((π₯^2 + 1) (π₯ β 1) ) = (β 1/2 π₯ β 1/2)/(π₯^2 + 1) + (1/2)/(π₯ β 1) = (β1)/2 ( π₯)/(π₯^2 + 1) β1/2 1/(π₯^2 + 1)+ 1/2(π₯ β 1) Hence we can write 1/((π₯^2 + 1) (π₯ β 1) )= (π΄π₯ + π΅)/(π₯^2 + 1) + πΆ/(π₯ β 1) 1/((π₯^2 + 1) (π₯ β 1) ) = (β 1/2 π₯ β 1/2)/(π₯^2 + 1) + (1/2)/(π₯ β 1) = (β1)/2 ( π₯)/(π₯^2 + 1) β1/2 1/(π₯^2 + 1)+ 1/2(π₯ β 1) Therefore, we can write I=β«1βγ(π₯+1)+1/(π₯^2 + 1)(π₯ β 1) ππ₯γ =β«1β[(π₯+1)β1/2 π₯/((π₯^2 + 1) ) ππ₯ββ«1βγ1/2 1/(π₯^2 + 1) ππ₯+β«1βγ1/2 1/((π₯ β 1) ) ππ₯γγ] =π₯^2/2+π₯β1/2 β«1βγπ₯/(π₯^2 + 1)β1/2 β«1βγ1/(π₯^2 + 1) ππ₯+1/2 β«1βγ1/(π₯ β 1) ππ₯γγγ β΄ I = π₯^2/2+π₯ β 1/2 I"1 β " 1/2 I"2 + " 1/2 I"3" Solving π°π I1=β«1βγπ₯/(π₯^2 + 1) ππ₯γ Put π‘=π₯^2+1 Differentiating w.r.t. π₯ ππ‘/ππ₯=2π₯+0 ππ‘/2π₯=ππ₯ Therefore, β«1βγ(π₯ ππ₯)/(π₯^2 + 1)=β«1βπ₯/π‘ ππ‘/2π₯γ=β«1β1/2 ππ‘/π‘=1/2 πππ|π‘|+πΆ1 Putting π‘=π₯^2+1 =1/2 πππ|π₯^2+1|+πΆ1 And, I2=β«1βγ1/(π₯^2 + 1) ππ₯γ=tan^(β1)β‘γπ₯+γ πΆ2 I3=β«1βγ1/(π₯ β1) ππ₯γ=πππ|π₯β1|+πΆ3 Hence πΌ=π₯^2/2+π₯β1/2 πΌ1β1/2 πΌ2+1/2 πΌ3 =π₯^2/2+π₯β1/2 (1/2 πππ|π₯^2+1|+πΆ1)β1/2 (γπ‘ππγ^(β1) (π₯)+C_2 )β1/2 (πππ|π₯β1|+πΆ3) =π₯^2/2+π₯β1/4 πππ|π₯^2+1|+πΆ1/2β1/2 tan^(β1)β‘γπ₯ πΆ2/2+1/2 πππ|π₯β1|+πΆ3/2γ =π^π/π+π+π/π πππ|πβπ|βπ/π πππ(π^π+π)βπ/π γπππγ^(βπ)β‘γπ+πͺγ