Slide17.JPG Slide18.JPG Slide19.JPG Slide20.JPG Slide21.JPG Slide22.JPG Slide23.JPG Slide24.JPG Slide25.JPG

You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.


Transcript

Example 37 Evaluate ∫1β–’(π‘₯^4 𝑑π‘₯)/(π‘₯ βˆ’1)(π‘₯^2 + 1) Let I = ∫1β–’(π‘₯^4 𝑑π‘₯)/(π‘₯ βˆ’1)(π‘₯^2 + 1) 𝑑π‘₯ We can write π‘₯^4/(π‘₯ βˆ’1)(π‘₯^2 + 1) = π‘₯^4/(π‘₯^3 βˆ’ π‘₯^2+ π‘₯ βˆ’ 1) Dividing Numerator by denominator as follows. Hence π‘₯^4 = (π‘₯^3βˆ’π‘₯^2+π‘₯+1) (π‘₯+1)+1 Thus, π‘₯^4/(π‘₯^3 βˆ’ π‘₯^2 + π‘₯ + 1) = (π‘₯+1)+1/(π‘₯^3 βˆ’ π‘₯^2 + π‘₯ + 1) = (π‘₯+1)+1/((π‘₯ βˆ’ 1) (π‘₯^2 +1) ) Now, we can write 1/((π‘₯^2 + 1) (π‘₯ βˆ’ 1) )= (𝐴π‘₯ + 𝐡)/(π‘₯^2 + 1) + 𝐢/(π‘₯ βˆ’ 1) 1/((π‘₯^2 + 1) (π‘₯ βˆ’ 1) )= ((𝐴π‘₯ + 𝐡)(π‘₯ βˆ’ 1) + 𝐢 (π‘₯^2 + 1))/((π‘₯^2 + 1)(π‘₯ βˆ’1)) Canceling denominator 1 = (𝐴π‘₯ + 𝐡)(π‘₯ βˆ’ 1) + 𝐢 (π‘₯^2 + 1) Putting x = 1 1 = (𝐴(1) + 𝐡)(1βˆ’1) + 𝐢 ((βˆ’1)^2 + 1) 1 = (𝐴+𝐡)(0)+ 𝐢 (1+1) 1 = 2𝐢 𝐢=1/2 Putting x = 0 1 = (𝐴π‘₯ + 𝐡)(π‘₯ βˆ’ 1) + 𝐢 (π‘₯^2 + 1) 1 = (𝐴(0) + 𝐡)(0βˆ’1) + 𝐢 (0^2+1) 1 = (𝐡)(βˆ’1) + 𝐢 (1) 1 = 𝐢 βˆ’"B" B =πΆβˆ’1 B =1/2 βˆ’1 B =(βˆ’1)/2 Putting x = βˆ’ 1 1 = (𝐴π‘₯ + 𝐡)(π‘₯ βˆ’ 1) + 𝐢 (π‘₯^2 + 1) 1 = (𝐴(βˆ’1)+ 𝐡)(βˆ’1βˆ’1) + 𝐢 ((βˆ’1)^2+1) 1 = (βˆ’π΄+𝐡)(βˆ’2)+𝐢 (1+1) 1 = (π΄βˆ’π΅)2+𝐢 (2) 1/2=π΄βˆ’π΅+𝐢 𝐴=1/2+π΅βˆ’πΆ 𝐴 =1/2βˆ’1/2βˆ’1/2 𝐴 =(βˆ’1)/2 Hence we can write 1/((π‘₯^2 + 1) (π‘₯ βˆ’ 1) )= (𝐴π‘₯ + 𝐡)/(π‘₯^2 + 1) + 𝐢/(π‘₯ βˆ’ 1) 1/((π‘₯^2 + 1) (π‘₯ βˆ’ 1) ) = (βˆ’ 1/2 π‘₯ βˆ’ 1/2)/(π‘₯^2 + 1) + (1/2)/(π‘₯ βˆ’ 1) = (βˆ’1)/2 ( π‘₯)/(π‘₯^2 + 1) βˆ’1/2 1/(π‘₯^2 + 1)+ 1/2(π‘₯ βˆ’ 1) Hence we can write 1/((π‘₯^2 + 1) (π‘₯ βˆ’ 1) )= (𝐴π‘₯ + 𝐡)/(π‘₯^2 + 1) + 𝐢/(π‘₯ βˆ’ 1) 1/((π‘₯^2 + 1) (π‘₯ βˆ’ 1) ) = (βˆ’ 1/2 π‘₯ βˆ’ 1/2)/(π‘₯^2 + 1) + (1/2)/(π‘₯ βˆ’ 1) = (βˆ’1)/2 ( π‘₯)/(π‘₯^2 + 1) βˆ’1/2 1/(π‘₯^2 + 1)+ 1/2(π‘₯ βˆ’ 1) Therefore, we can write I=∫1β–’γ€–(π‘₯+1)+1/(π‘₯^2 + 1)(π‘₯ βˆ’ 1) 𝑑π‘₯γ€— =∫1β–’[(π‘₯+1)βˆ’1/2 π‘₯/((π‘₯^2 + 1) ) 𝑑π‘₯βˆ’βˆ«1β–’γ€–1/2 1/(π‘₯^2 + 1) 𝑑π‘₯+∫1β–’γ€–1/2 1/((π‘₯ βˆ’ 1) ) 𝑑π‘₯γ€—γ€—] =π‘₯^2/2+π‘₯βˆ’1/2 ∫1β–’γ€–π‘₯/(π‘₯^2 + 1)βˆ’1/2 ∫1β–’γ€–1/(π‘₯^2 + 1) 𝑑π‘₯+1/2 ∫1β–’γ€–1/(π‘₯ βˆ’ 1) 𝑑π‘₯γ€—γ€—γ€— ∴ I = π‘₯^2/2+π‘₯ – 1/2 I"1 βˆ’ " 1/2 I"2 + " 1/2 I"3" Solving π‘°πŸ I1=∫1β–’γ€–π‘₯/(π‘₯^2 + 1) 𝑑π‘₯γ€— Put 𝑑=π‘₯^2+1 Differentiating w.r.t. π‘₯ 𝑑𝑑/𝑑π‘₯=2π‘₯+0 𝑑𝑑/2π‘₯=𝑑π‘₯ Therefore, ∫1β–’γ€–(π‘₯ 𝑑π‘₯)/(π‘₯^2 + 1)=∫1β–’π‘₯/𝑑 𝑑𝑑/2π‘₯γ€—=∫1β–’1/2 𝑑𝑑/𝑑=1/2 π‘™π‘œπ‘”|𝑑|+𝐢1 Putting 𝑑=π‘₯^2+1 =1/2 π‘™π‘œπ‘”|π‘₯^2+1|+𝐢1 And, I2=∫1β–’γ€–1/(π‘₯^2 + 1) 𝑑π‘₯γ€—=tan^(βˆ’1)⁑〖π‘₯+γ€— 𝐢2 I3=∫1β–’γ€–1/(π‘₯ βˆ’1) 𝑑π‘₯γ€—=π‘™π‘œπ‘”|π‘₯βˆ’1|+𝐢3 Hence 𝐼=π‘₯^2/2+π‘₯βˆ’1/2 𝐼1βˆ’1/2 𝐼2+1/2 𝐼3 =π‘₯^2/2+π‘₯βˆ’1/2 (1/2 π‘™π‘œπ‘”|π‘₯^2+1|+𝐢1)βˆ’1/2 (γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (π‘₯)+C_2 )βˆ’1/2 (π‘™π‘œπ‘”|π‘₯βˆ’1|+𝐢3) =π‘₯^2/2+π‘₯βˆ’1/4 π‘™π‘œπ‘”|π‘₯^2+1|+𝐢1/2βˆ’1/2 tan^(βˆ’1)⁑〖π‘₯ 𝐢2/2+1/2 π‘™π‘œπ‘”|π‘₯βˆ’1|+𝐢3/2γ€— =𝒙^𝟐/𝟐+𝒙+𝟏/𝟐 π’π’π’ˆ|π’™βˆ’πŸ|βˆ’πŸ/πŸ’ π’π’π’ˆ(𝒙^𝟐+𝟏)βˆ’πŸ/𝟐 〖𝒕𝒂𝒏〗^(βˆ’πŸ)⁑〖𝒙+π‘ͺγ€—

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo