Chapter 7 Class 12 Integrals
Concept wise

  Slide34.JPG

Slide35.JPG
Slide36.JPG
Slide37.JPG

Go Ad-free

Transcript

Example 30 Evaluate ∫_0^πœ‹β–’(π‘₯ 𝑠𝑖𝑛 π‘₯)/(1 + cos^2⁑π‘₯ ) 𝑑π‘₯ Let I=∫_0^πœ‹β–’(π‘₯ sin⁑π‘₯)/(1 + cos^2⁑π‘₯ ) 𝑑π‘₯ ∴ I=∫_0^πœ‹β–’((πœ‹ βˆ’ π‘₯) 𝑠𝑖𝑛(πœ‹ βˆ’ π‘₯))/(1 + cos^2⁑(πœ‹ βˆ’ π‘₯) ) 𝑑π‘₯ I=∫_0^πœ‹β–’γ€–((πœ‹ βˆ’ π‘₯) sin⁑π‘₯)/(1 + [βˆ’cos⁑π‘₯ ]^2 ) 𝑑π‘₯γ€— I=∫_0^πœ‹β–’γ€–(πœ‹ sin⁑〖π‘₯ βˆ’ π‘₯ sin⁑π‘₯ γ€—)/(1 + cos^2⁑π‘₯ ) 𝑑π‘₯γ€— Adding (1) and (2) i.e. (1) + (2) I +I=∫_0^πœ‹β–’(π‘₯ sin⁑π‘₯)/(1 + cos^2⁑π‘₯ ) 𝑑π‘₯+∫_0^πœ‹β–’(πœ‹ sin⁑〖π‘₯ βˆ’ π‘₯ 𝑠𝑖𝑛π‘₯γ€—)/(1 + cos^2⁑π‘₯ ) 𝑑π‘₯ 2I =∫_0^πœ‹β–’(π‘₯ sin⁑〖π‘₯ + πœ‹ sin⁑〖π‘₯ βˆ’ π‘₯ sin⁑π‘₯ γ€— γ€—)/(1 + cos^2⁑π‘₯ ) 𝑑π‘₯ 2I =∫_0^πœ‹β–’(πœ‹ sin⁑〖π‘₯ γ€—)/(1 + cos^2⁑π‘₯ ) 𝑑π‘₯ 2I =πœ‹βˆ«_0^πœ‹β–’sin⁑〖π‘₯ γ€—/(1 + cos^2⁑π‘₯ ) 𝑑π‘₯ ∴ I = πœ‹/2 ∫_0^πœ‹β–’γ€–sin⁑π‘₯/(1 + cos^2⁑π‘₯ ) 𝑑π‘₯γ€— Let cos π‘₯ = t Differentiate both sides w.r.t.π‘₯ – sin⁑〖π‘₯=𝑑𝑑/𝑑π‘₯γ€— 𝑑π‘₯=𝑑𝑑/(βˆ’sin⁑π‘₯ ) Putting the values of (cos⁑π‘₯ ) and dπ‘₯, we get I =πœ‹/2 ∫1_0^πœ‹β–’γ€–sin⁑π‘₯/(1 + 𝑑^2 ).𝑑π‘₯γ€— I = πœ‹/2 ∫1_0^πœ‹β–’γ€–sin⁑π‘₯/(1 + 𝑑^2 ) Γ— 𝑑𝑑/(βˆ’sin⁑π‘₯ )γ€— I = (βˆ’πœ‹)/2 ∫1_0^πœ‹β–’γ€–1/(1 + 𝑑^2 ) .𝑑𝑑〗 I = (βˆ’πœ‹)/2 ∫1_0^πœ‹β–’γ€–1/((1)^2 + (𝑑)^2 ) .𝑑𝑑〗 I=(βˆ’πœ‹)/2 [1/1 tan^(βˆ’1)⁑(𝑑/1) ]_π‘œ^πœ‹ =(βˆ’πœ‹)/2 [tan^(βˆ’1)⁑(𝑑) ]_0^πœ‹ Putting t = cos x =(βˆ’πœ‹)/2 [tan^(βˆ’1)⁑(cos⁑π‘₯ ) ]_0^πœ‹ =(βˆ’πœ‹)/2 [tan^(βˆ’1)⁑〖[cosβ‘πœ‹ ]βˆ’tan^(βˆ’1)⁑[cos⁑0 ] γ€— ] =(βˆ’πœ‹)/2 [tan^(βˆ’1)⁑〖(βˆ’1)βˆ’tan^(βˆ’1)⁑(1) γ€— ] =(βˆ’πœ‹)/2 [βˆ’tan^(βˆ’1)⁑〖(1)βˆ’tan^(βˆ’1)⁑(1) γ€— ] =(βˆ’πœ‹)/2 [βˆ’2 tan^(βˆ’1)⁑(1) ] =πœ‹[tan^(βˆ’1)⁑(1) ] = πœ‹[πœ‹/4] =𝝅^𝟐/πŸ’

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo