Slide32.JPG

Slide33.JPG

Go Ad-free

Transcript

Example 29 Evaluate ∫_((βˆ’πœ‹)/4)^(πœ‹/4)β–’sin^2⁑π‘₯ 𝑑π‘₯ Let f(x) = 〖𝑠𝑖𝑛〗^2 π‘₯ f(-x) = 〖𝑠𝑖𝑛〗^2 (βˆ’π‘₯)=(βˆ’sin⁑π‘₯ )^2=〖𝑠𝑖𝑛〗^2 π‘₯ Since f(x) = f(-x) Hence, 〖𝑠𝑖𝑛〗^2 π‘₯ is an even function ∫_((βˆ’πœ‹)/4)^(πœ‹/4)β–’sin^2⁑π‘₯ 𝑑π‘₯=∫_0^(πœ‹/4)β–’sin^2⁑π‘₯ 𝑑π‘₯ = ∫_0^(πœ‹/4)β–’((1 βˆ’ cos⁑〖2 γ€— π‘₯)/2) 𝑑π‘₯ = 2∫_0^(πœ‹/4)β–’γ€–[1/2βˆ’(cos⁑2 π‘₯)/2] 𝑑π‘₯γ€— = 2 [π‘₯/2βˆ’sin⁑2π‘₯/(2Γ—2)]_0^(πœ‹/4) = 2 [π‘₯/2βˆ’sin⁑2π‘₯/4]_0^(πœ‹/4) Putting Limits = 2(πœ‹/4 (1/2)βˆ’sin⁑2(πœ‹/4)/4) – 2 (0/2βˆ’sin⁑2(0)/4) = 2(πœ‹/8 βˆ’β‘γ€–sin⁑(πœ‹/2)/4γ€— )βˆ’0 = 2 (πœ‹/8βˆ’1/4) = 𝝅/πŸ’βˆ’πŸ/𝟐

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo