Chapter 7 Class 12 Integrals
Concept wise

    Slide18.JPG

Slide19.JPG
Slide20.JPG
Slide21.JPG
Slide22.JPG Slide23.JPG

Go Ad-free

Transcript

Example 26 (Method 1) Evaluate โˆซ_(โˆ’1)^1โ–’ใ€–5๐‘ฅ^4 โˆš(๐‘ฅ^5+1)ใ€— ๐‘‘๐‘ฅ Step 1 :- Let F(๐‘ฅ)=โˆซ1โ–’ใ€–5๐‘ฅ^4 โˆš(๐‘ฅ^5+1)ใ€— ๐‘‘๐‘ฅ Putting ๐‘ก=๐‘ฅ^5+1 Differentiating w.r.t.๐‘ฅ ๐‘‘๐‘ก/๐‘‘๐‘ฅ=5๐‘ฅ^4 ๐‘‘๐‘ก/(5๐‘ฅ^4 )=๐‘‘๐‘ฅ Therefore we can write โˆซ1โ–’ใ€–5๐‘ฅ^4 โˆš(๐‘ฅ^5+1) ๐‘‘๐‘ฅ=โˆซ1โ–’ใ€–5๐‘ฅ^4 โˆš๐‘ก . ๐‘‘๐‘ก/(5๐‘ฅ^4 )ใ€—ใ€— =โˆซ1โ–’โˆš๐‘ก ๐‘‘๐‘ก =โˆซ1โ–’ใ€–๐‘ก^(1/2) ๐‘‘๐‘กใ€— =ใ€–๐‘ก ใ€—^(1/2 +1)/(1/2 +1) =2/3 ๐‘ก^(3/2) Putting back ๐‘ก=๐‘ฅ^5+1 =2/3 (๐‘ฅ^5+1)^(3/2) Hence , F(๐‘ฅ)=2/3 (๐‘ฅ^5+1)^(3/2) Step 2 :- โˆซ_(โˆ’1)^1โ–’ใ€–5๐‘ฅ^4 ใ€— โˆš(๐‘ฅ^5+1) ๐‘‘๐‘ฅ=๐น(1)โˆ’๐น(โˆ’1) =2/3 (1^5+1)^(3/2)โˆ’2/3 ((โˆ’1)^5+1)^(3/2) =2/3 (1+1)^(3/2)โˆ’2/3 (โˆ’1+1)^(3/2) =2/3 (2)^(3/2)โˆ’0 =2/3 2โˆš2 =(๐Ÿ’โˆš๐Ÿ)/๐Ÿ‘ Example 26 (Method 2) Evaluate โˆซ_(โˆ’1)^1โ–’ใ€–5๐‘ฅ^4 โˆš(๐‘ฅ^5+1)ใ€— ๐‘‘๐‘ฅ Put ๐‘ก=๐‘ฅ^5+1 Differentiating w.r.t. ๐‘ฅ ๐‘‘๐‘ก/๐‘‘๐‘ฅ=๐‘‘/๐‘‘๐‘ฅ (๐‘ฅ^5+1) ๐‘‘๐‘ก/๐‘‘๐‘ฅ=5๐‘ฅ^4 ๐‘‘๐‘ก/(5๐‘ฅ^4 )=๐‘‘๐‘ฅ Hence when ๐‘ฅ varies from ๐‘ฅ=โˆ’1 to 1, ๐‘ก varies from 0 to 2 Therefore, โˆซ_(โˆ’1)^1โ–’ใ€–5๐‘ฅ^4 โˆš(1+๐‘ฅ^5 ) ๐‘‘๐‘ฅ=โˆซ_0^2โ–’ใ€–5๐‘ฅ^4 โˆš๐‘ก ๐‘‘๐‘ก/(5๐‘ฅ^4 )ใ€—ใ€— =โˆซ1_0^2โ–’ใ€–โˆš๐‘ก ๐‘‘๐‘กใ€— =[๐‘ก^(1/2 + 1)/(1/2 +1)]_0^2 =[๐‘ก^(3/2)/(3/2)]_0^2 =[2/3 ๐‘ก^(3/2) ]_0^2 =2/3 (2^(3/2)โˆ’0^(3/2) ) =2/3 2^(3/2) =2/3 ร—2โˆš2 =๐Ÿ’/๐Ÿ‘ โˆš๐Ÿ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo