Example 22 - Chapter 7 Class 12 Integrals (Important Question)
Last updated at April 16, 2024 by Teachoo
Chapter 7 Class 12 Integrals
Ex 7.1, 18 Important
Ex 7.1, 20
Ex 7.2, 20 Important
Ex 7.2, 26 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.3, 6 Important
Ex 7.3, 13 Important
Ex 7.3, 18 Important
Ex 7.3, 22 Important
Ex 7.3, 24 (MCQ) Important
Example 9 (i)
Example 10 (i)
Ex 7.4, 8 Important
Ex 7.4, 15 Important
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 25 (MCQ) Important
Example 15 Important
Ex 7.5, 9 Important
Ex 7.5, 11 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 21 Important
Example 20 Important
Example 22 Important You are here
Ex 7.6, 13 Important
Ex 7.6, 14 Important
Ex 7.6, 18 Important
Ex 7.6, 19
Ex 7.6, 24 (MCQ) Important
Ex 7.7, 5 Important
Ex 7.7, 10
Ex 7.7, 11 Important
Question 1 Important
Question 4 Important
Question 6 Important
Example 25 (i)
Ex 7.8, 15
Ex 7.8, 16 Important
Ex 7.8, 20 Important
Ex 7.8, 22 (MCQ)
Ex 7.9, 4
Ex 7.9, 7 Important
Ex 7.9, 8
Ex 7.9, 9 (MCQ) Important
Example 28 Important
Example 32 Important
Example 34 Important
Ex 7.10,8 Important
Ex 7.10, 18 Important
Example 38 Important
Example 39 Important
Example 42 Important
Misc 18 Important
Misc 8 Important
Question 1 Important
Misc 23 Important
Misc 29 Important
Question 2 Important
Misc 38 (MCQ) Important
Question 4 (MCQ) Important
Integration Formula Sheet Important
Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Example 22 Find (i) โซ1โ๐^๐ฅ (tan^(โ1)โก๐ฅ+ 1/(1 + ๐ฅ^2 )) ๐๐ฅ โซ1โใ๐^๐ฅ (tan^(โ1)โก๐ฅ+1/(1 + ๐ฅ^2 ))๐๐ฅใ It is of the form โซ1โใ๐^๐ฅ [๐(๐ฅ)+๐^โฒ (๐ฅ)] ใ ๐๐ฅ=๐^๐ฅ ๐(๐ฅ)+๐ถ Where ๐(๐ฅ)=tan^(โ1)โก๐ฅ ๐^โฒ (๐ฅ)= 1/(1 + ๐ฅ^2 ) So, our equation becomes โซ1โใ๐^๐ฅ (tan^(โ1)โก๐ฅ+1/(1 + ๐ฅ^2 ))๐๐ฅใ=๐^๐ ใ๐ญ๐๐งใ^(โ๐)โกใ๐+๐ชใ Example 22 Find (ii) โซ1โ((๐ฅ^2 + 1) ๐^๐ฅ)/(๐ฅ + 1)^2 ๐๐ฅ โซ1โใ(๐ฅ^2 + 1)/(๐ฅ + 1)^2 .๐^๐ฅ ๐๐ฅใ Adding and subtracting 1 in numerator =โซ1โใ(๐ฅ^2+ 1 + 1 โ 1)/(๐ฅ + 1)^2 .๐^๐ฅ .๐๐ฅใ =โซ1โใ(๐ฅ^2 โ 1 + 1 + 1)/(๐ฅ + 1)^2 .๐^๐ฅ .๐๐ฅใ =โซ1โใ[(๐ฅ^2 โ 1)/(๐ฅ + 1)^2 +2/(๐ฅ + 1)^2 ] ๐^๐ฅ ๐๐ฅใ =โซ1โใ๐^๐ฅ [(๐ฅ^2 โ (1)^2)/(๐ฅ + 1)^2 +2/(๐ฅ + 1)^2 ]๐๐ฅใ =โซ1โใ๐^๐ฅ [(๐ฅ โ 1)(๐ฅ + 1)/(๐ฅ + 1)^2 +2/(๐ฅ + 1)^2 ]๐๐ฅใ =โซ1โใ๐^๐ฅ [(๐ฅ โ 1)/(๐ฅ + 1)+2/(๐ฅ + 1)^2 ]๐๐ฅใ It is of form โซ1โใ๐^๐ฅ [๐(๐ฅ)+๐^โฒ (๐ฅ)] ใ ๐๐ฅ=๐^๐ฅ ๐(๐ฅ)+๐ถ Where ๐(๐ฅ)=(๐ฅ โ 1)/(๐ฅ + 1) ๐^โฒ (๐ฅ)=๐/๐๐ฅ [(๐ฅ โ 1)/(๐ฅ + 1)] ๐^โฒ (๐ฅ)=(1.(๐ฅ + 1) โ1 (๐ฅ โ 1))/(๐ฅ + 1)^2 =(๐ฅ + 1 โ ๐ฅ + 1)/(๐ฅ + 1)^2 =2/(๐ฅ + 1)^2 Thus, our equation becomes โซ1โใ(๐ฅ^2 + 1)/(๐ฅ + 1)^2 .๐^๐ฅ=โซ1โใ๐^๐ฅ [(๐ฅ โ 1)/(๐ฅ + 1)+2/(๐ฅ + 1)^2 ]๐๐ฅใใ =๐^๐ฅ [(๐ฅ โ 1)/(๐ฅ + 1)]+๐ถ =(๐ โ ๐)/(๐ + ๐).๐^๐+๐ช