Example 21 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Integration by parts
Ex 7.6, 3
Ex 7.6, 23 (MCQ)
Example 17
Ex 7.6, 1
Ex 7.6, 2 Important
Ex 7.6, 12
Example 21 Important You are here
Ex 7.6, 21
Ex 7.6, 5 Important
Ex 7.6, 4
Ex 7.6, 6
Ex 7.6, 15
Example 18 Important
Ex 7.6, 14 Important
Ex 7.6, 7 Important
Ex 7.6, 9
Ex 7.6, 8
Ex 7.6, 11
Example 20 Important
Ex 7.6, 13 Important
Ex 7.6, 22 Important
Ex 7.6, 10 Important
Example 38 Important
Integration by parts
Last updated at April 16, 2024 by Teachoo
Example 21 Find β«1βπ^π₯ sinβ‘π₯ ππ₯ Let I1 = β«1βγ π^π₯ γ sinβ‘π₯ ππ₯ I1 = sinβ‘π₯ β«1βγπ^π₯ ππ₯γββ«1β(π(sinβ‘π₯ )/ππ₯ β«1βγπ^π₯ ππ₯γ) ππ₯ I1 = π^π₯ sinβ‘π₯ββ«1βγcosβ‘π₯ . π^π₯ ππ₯γ Now we know that β«1βγπ(π₯) πβ‘(π₯) γ ππ₯=π(π₯) β«1βπ(π₯) ππ₯ββ«1β(πβ²(π₯)β«1βπ(π₯) ππ₯) ππ₯ Putting f(x) = sin x and g(x) = ex Solving I2 I2 = β«1βγcosβ‘π₯ . π^π₯ ππ₯γ I2 = cos x β«1βγπ^π₯ ππ₯γ β β«1βγ((cosβ‘π₯)β²γ β«1βγπ^π₯ ππ₯γ)ππ₯ I2 = cos x π^π₯ β β«1βγ(βsinβ‘π₯)γ π^π₯ ππ₯ I2 = π^π₯ cos x + β«1βsinβ‘π₯ π^π₯ ππ₯ I2 = π^π₯ cos x + πΌ1 Now we know that β«1βγπ(π₯) πβ‘(π₯) γ ππ₯=π(π₯) β«1βπ(π₯) ππ₯ββ«1β(πβ²(π₯)β«1βπ(π₯) ππ₯) ππ₯ Putting f(x) = sin x and g(x) = ex Now, Putting value of I2 in (1) , I1 = " " π^π₯ sinβ‘π₯ββ«1βγcosβ‘π₯ π^π₯ γ ππ₯ I1 = " " π^π₯ sinβ‘π₯β(π^π₯ cosβ‘π₯+πΌ1)+πΆ I1 = " " π^π₯ sinβ‘π₯βπ^π₯ cosβ‘π₯βπΌ1+πΆ 2I1 = " " π^π₯ sinβ‘π₯βπ^π₯ cosβ‘π₯ + πΆ I1 = 1/2 (π^π₯ sinβ‘π₯βπ^π₯ cosβ‘π₯ ) + C π°π = π^π/π (πππβ‘πβπππβ‘π ) + C