Example 20 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Integration by parts
Ex 7.6, 3
Ex 7.6, 23 (MCQ)
Example 17
Ex 7.6, 1
Ex 7.6, 2 Important
Ex 7.6, 12
Example 21 Important
Ex 7.6, 21
Ex 7.6, 5 Important
Ex 7.6, 4
Ex 7.6, 6
Ex 7.6, 15
Example 18 Important
Ex 7.6, 14 Important
Ex 7.6, 7 Important
Ex 7.6, 9
Ex 7.6, 8
Ex 7.6, 11
Example 20 Important You are here
Ex 7.6, 13 Important
Ex 7.6, 22 Important
Ex 7.6, 10 Important
Example 38 Important
Integration by parts
Last updated at April 16, 2024 by Teachoo
Example 20 Find β«1β(π₯ sin^(β1)β‘π₯)/β(1 β π₯^2 ) ππ₯ Example 20 Find β«1β(π₯ sin^(β1)β‘π₯)/β(1 β π₯^2 ) ππ₯ β«1β(π₯ sin^(β1)β‘π₯)/β(1 β π₯^2 ) ππ₯ Let t = γπ ππγ^(β1) (π₯) ππ‘/ππ₯=1/β(1 β π₯^2 ) dt = ππ₯/β(1 β π₯^2 ) So, our equation becomes β«1β(π₯ sin^(β1)β‘π₯)/β(1 β π₯^2 ) ππ₯ = β«1βγsinβ‘γπ‘Γπ‘ γΓππ₯/β(1 β π₯^2 )γ = β«1βγsinβ‘γπ‘Γπ‘ γ ππ‘γ =π‘ β«1βγsinβ‘γπ‘ ππ‘ β β«1β(π(π‘))/ππ‘γ γ β«1βsinβ‘γπ‘ ππ‘ γ ππ‘ = t (βcos t) β β«1β(βcosβ‘π‘ ) ππ‘ = β t cos t + β«1βcosβ‘π‘ ππ‘ = βt cos t + sin t + C Now we know that β«1βγπ(π₯) πβ‘(π₯) γ ππ₯=π(π₯) β«1βπ(π₯) ππ₯ββ«1β(πβ²(π₯)β«1βπ(π₯) ππ₯) ππ₯ Putting f(x) = t and g(x) = sin t Hence we take First function :-f(x) = t Second function :- g(x) = sin t β«1βγsinβ‘γπ‘Γπ‘ ππ‘=π‘ β«1βγsinβ‘γπ‘ ππ‘ β β«1β(π(π‘))/ππ‘γ γγ γ β«1βsinβ‘γπ‘ ππ‘ γ ππ‘ = t (βcost) β β«1β(βcosβ‘π‘ ) ππ‘ = β t cost + β«1βcosβ‘π‘ ππ‘ = βt cost + sin t + C (β«1βsinβ‘γπ₯ ππ₯=βcosβ‘π₯ γ " " ) (β«1βcosβ‘γπ₯ ππ₯ = sinβ‘π₯ γ " " ) t = γπ ππγ^(β1) (π₯) sin t = x sin t = x γπ ππγ^2 π‘ = π₯^2 1 β cos^2β‘π‘ = π₯^2 γπππ γ^2 t = 1 β π₯^2 cos t = β(1βπ₯^2 ) Now, Hence putting the values. β«1β(π₯ γπ ππγ^(β1) π₯)/β(1βπ₯^2 ) ππ₯=" βt cost + sin t + C" =πββ(πβπ^π ) γπππγ^(βπ) π +π