Example 15 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Examples
Example 1 (ii)
Example 1 (iii)
Example 2 (i)
Example 2 (ii)
Example 2 (iii) Important
Example 3 (i)
Example 3 (ii) Important
Example 3 (iii)
Example 4
Example 5 (i)
Example 5 (ii)
Example 5 (iii) Important
Example 5 (iv) Important
Example 6 (i)
Example 6 (ii) Important
Example 6 (iii) Important
Example 7 (i)
Example 7 (ii) Important
Example 7 (iii)
Example 8 (i)
Example 8 (ii) Important
Example 9 (i)
Example 9 (ii) Important
Example 9 (iii) Important
Example 10 (i)
Example 10 (ii) Important
Example 11
Example 12
Example 13 Important
Example 14
Example 15 Important You are here
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important
Example 21 Important
Example 22 Important
Example 23
Example 24
Example 25 (i)
Example 25 (ii) Important
Example 25 (iii)
Example 25 (iv) Important
Example 26
Example 27
Example 28 Important
Example 29
Example 30
Example 31
Example 32 Important
Example 33 Important
Example 34 Important
Example 35
Example 36 Important
Example 37 Important
Example 38 Important
Example 39 Important
Example 40 Important
Example 41 Important
Example 42 Important
Question 1 Important
Question 2
Question 3 (Supplementary NCERT) Important
Last updated at April 16, 2024 by Teachoo
Example 15 Find ∫1▒((3 sinϕ −2) cosϕ )/(5 − cos^2ϕ − 4 sinϕ ) 𝑑ϕ Let 𝑡=sinϕ Differentiating w.r.t. ϕ 𝑑𝑡/𝑑ϕ=cosϕ 𝑑𝑡/cosϕ =𝑑ϕ Now we can write ∫1▒((3 sinϕ −2) cosϕ )/(5 − cos^2ϕ − 4 sinϕ ) 𝑑ϕ =∫1▒((3 sinϕ − 2) cosϕ )/(5 − (1 − sin^2ϕ) − 4 sinϕ ) 𝑑ϕ =∫1▒((3𝑡 − 2) cosϕ )/(5 − 1 + 𝑡^2 − 4𝑡) 𝑑𝑡/cosϕ =∫1▒((3𝑡 − 2) 𝑑𝑡 )/(4 + 𝑡^2 − 4𝑡) =∫1▒((3𝑡 − 2) 𝑑𝑡 )/(𝑡^2 + 2^2 − 2.2 𝑡) =∫1▒((3𝑡 − 2) 𝑑𝑡 )/(𝑡 − 2)^2 We can write integrand ((3𝑡 − 2))/(𝑡 − 2)^2 =(𝐴 )/(𝑡 − 2) + (𝐵 )/(𝑡 − 2)^2 〖𝑠𝑖𝑛〗^2ϕ+〖𝑐𝑜𝑠〗^2ϕ=1 〖𝑐𝑜𝑠〗^2 ϕ=1−〖𝑠𝑖𝑛〗^2 ϕ (3𝑡 − 2)/(𝑡 − 2)^2 =(𝐴(𝑡 − 2) + 𝐵)/(𝑡 − 2)^2 Cancelling denominator (3𝑡−2)=𝐴(𝑡−2)+𝐵 Putting t = 2 (3(2) − 2) = A (2 − 2) + B 6 − 2 = A × 0 + B 4 = B B = 4 Putting t = 0 (3(0) − 2) = A (0 − 2) + B −2 = −2A + B Putting B = 4 −2 = −2A + 4 −6 = −2A A = 3 Hence, we can write it as ((3𝑡 − 2))/(𝑡 − 2)^2 =(𝐴 )/(𝑡 − 2) + (𝐵 )/(𝑡 − 2)^2 ((3𝑡 − 2))/(𝑡 − 2)^2 = 3/(𝑡 − 2) + 4/(𝑡 − 2)^2 Now, our equation becomes ∫1▒(3𝑡 − 2)/(𝑡 − 2)^2 𝑑𝑡=∫1▒3/(𝑡 − 2) 𝑑𝑡+∫1▒4/(𝑡 − 2)^2 𝑑𝑡 =3 log|𝑡−2|+4×(𝑡 − 2)^(−1)/(−1) +𝐶 =3 log|𝑡−2|−4×1/((𝑡 − 2) ) +𝐶 Substituting back the value of t =3 log|sinϕ−2|−4/(sinϕ − 2) +𝐶 =3 𝑙𝑜𝑔〖(2−𝑠𝑖𝑛𝜙)〗−4/(𝑠𝑖𝑛𝜙 − 2) +𝐶 =3 𝑙𝑜𝑔〖(2−𝑠𝑖𝑛𝜙)〗−4/(−(2 − 𝑠𝑖𝑛𝜙)) +𝐶 =𝟑 𝒍𝒐𝒈〖(𝟐−𝒔𝒊𝒏𝝓)〗+𝟒/(𝟐 − 𝒔𝒊𝒏𝝓 ) +𝑪 Since 𝑠𝑖𝑛ϕ∈[−1 , 1] 𝑠𝑖𝑛ϕ<2 2−𝑠𝑖𝑛ϕ always positive |𝑠𝑖𝑛ϕ−2|=2−𝑠𝑖𝑛ϕ